Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Biodivers ; : e202400944, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38828873

RESUMO

The study of new plant species and the identification of their chemical composition may contribute to the discovery of a new breakthrough substances for pharmacotherapeutical applications. For the first time, we examined antioxidant and antimicrobial activity of 70% v/v methanolic extracts from inflorescences and roots of Cirsium monspessulanum (L.) Hill. obtained by the ASE method. In the (2,2-diphenyl-1-picrylhydrazyl) DPPH analysis, tested extract of inflorescences showed antioxidant activity with an EC50 = 0.223±0.0479 mg/mL, and (Cupric Ion Reducting Antioxidant Capacity) CUPRAC test assessed the antiradical activity on 14.95±0.13 mgTE/g and for roots the values were EC50=0.307±0.0554 mg/mL and 11.18±0.49 mgTE/g, respectively. Furthermore, extract from the inflorescences possessed the highest antimicrobial activity against Staphylococcus aureus,Staphylococcus epidermidis and Micrococcus luteus with MIC = 1.25 mg/mL for each. HPLC/ESI-QTOF-MS/MS method identified 7 phenolic acids and 14 flavonoids in inflorescences extract and only 7 phenolic acids in roots extract.

2.
Curr Med Chem ; 31(15): 2003-2020, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37855341

RESUMO

Malignant melanoma is the rarest but most aggressive and deadly skin cancer. Melanoma is the result of a malignant transformation of melanocytes, which leads to their uncontrolled proliferation. Mutations in the mitogen-activated protein kinase (MAPK) pathway, which are crucial for the control of cellular processes, such as apoptosis, division, growth, differentiation, and migration, are one of its most common causes. BRAF kinase, as one of the known targets of this pathway, has been known for many years as a prominent molecular target in melanoma therapy, and the following mini-review outlines the state-of-the-art knowledge regarding its structure, mutations and mechanisms.


Assuntos
Melanoma , Neoplasias Cutâneas , Humanos , Melanoma/tratamento farmacológico , Melanoma/patologia , Proteínas Proto-Oncogênicas B-raf/genética , Neoplasias Cutâneas/tratamento farmacológico , Neoplasias Cutâneas/patologia , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Apoptose , Mutação , Sistema de Sinalização das MAP Quinases , Linhagem Celular Tumoral
3.
Inorg Chem ; 63(1): 151-162, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38117683

RESUMO

Rational design of organic building blocks provides opportunities to control and tune various physicochemical properties of metal-organic frameworks (MOFs), including gas handling, proton conduction, and structural flexibility, the latter of which is responsible for new adsorption phenomena and often superior properties compared to rigid porous materials. In this work, we report synthesis, crystal structures, gas adsorption, and proton conduction for a flexible two-dimensional cadmium-based MOF (JUK-13-SO3H-SO2) containing a new sulfonated 4,4'-oxybis(benzoate) linker with a blocking SO2 bridge. This two-dimensional (2D) MOF is compared in detail with a previously reported three-dimensional Cd-MOF (JUK-13-SO3H), based on analogous, but nonflat, SO2-free sulfonated dicarboxylate. The comprehensive structure-property relationships and the detailed comparisons with insights into the networks flexibility are supported by five guest-dependent structures determined by single-crystal X-ray diffraction (XRD), and corroborated by spectroscopy (IR, 1H NMR), powder XRD, and elemental/thermogravimetric analyses, as well as by volumetric adsorption measurements (for N2, CO2, H2O), ideal adsorbed solution theory (IAST), density-functional theory (DFT+D) quantum chemical and grand-canonical Monte Carlo (GCMC) calculations, and electrochemical impedance spectroscopy (EIS) studies. Whereas both dynamic MOFs show moderate proton conductivity values, they exhibit excellent CO2/N2 selectivity related to the capture of CO2 from flue gases (IAST coefficients for 15:85 mixtures are equal to ca. 250 at 1 bar and 298 K). The presence of terminal sulfonate groups in both MOFs, introduced using a unique prechlorosulfonation strategy, is responsible for their hydrophilicity and water-assisted proton transport ability. The dynamic nature of the MOFs results in the appearance of breathing-type adsorption isotherms that exhibit large hysteresis loops (for CO2 and H2O) attributed to strong host-guest interactions. Theoretical modeling provides information about the adsorption mechanism and supports interpretation of experimental CO2 adsorption isotherms.

4.
Pharmaceuticals (Basel) ; 16(12)2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38139832

RESUMO

A series of N-Substituted 2-(benzenosulfonyl)-1-carbotioamide derivatives (WZ1-WZ4) were synthesized and characterized using spectral methods. A comprehensive activity study was performed for each compound. All compounds were tested for antibacterial activity. Moreover, in silico studies were carried out to determine the anticancer potential of the designed WZ1-WZ4 ligands. Based on molecular docking, aldehyde dehydrogenase was selected as a molecular target. The obtained data were compared with experimental data in vitro tests. Novel hybrids of the thiosemicarbazide scaffold and sulfonyl groups may have promising anticancer activity via the aldehyde dehydrogenase pathway. The best candidate for further studies appears to be WZ2, due to its superior selectivity in comparison to the other tested compounds.

5.
Molecules ; 28(20)2023 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-37894587

RESUMO

Chromatographic methods, apart from in silico ones, are commonly used rapid techniques for the evaluation of certain properties of biologically active compounds used for their prediction of pharmacokinetic processes. Thiosemicarbazides are compounds possessing anticancer, antimicrobial, and other valuable biological activities. The aim of the investigation was to estimate the lipophilicity of 1-aryl-4-(phenoxy)acetylthiosemicarbazides, to predict their oral adsorption and the assessment of their % plasma-protein binding (%PPB). RP-HPLC chromatographic techniques with five diversified HPLC systems, including columns with surface-bonded octadecylsilanes (C-18), phosphatidylcholine (immobilized artificial membrane, IAM), cholesterol (Chol), and α1-acid glycoprotein (AGP) and human serum albumin (HSA), were applied. The measured lipophilicity of all investigated compounds was within the range recommended for potential drug candidates. However, some derivatives are strongly bonded to HSA (%PPB ≈ 100%), which may limit some pharmacokinetic processes. HPLC determined lipophilicity descriptors were compared with those obtained by various computational approaches.


Assuntos
Biomimética , Proteínas Sanguíneas , Humanos , Biomimética/métodos , Proteínas Sanguíneas/metabolismo , Cromatografia Líquida de Alta Pressão/métodos , Semicarbazidas , Membranas Artificiais
6.
Toxicol Appl Pharmacol ; 475: 116634, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37482255

RESUMO

Numerous epidemiological studies report an increased risk of developing prostate cancer in patients with melanoma and an increased risk of developing melanoma in patients with prostate cancer. Based on our previous studies demonstrating the high anticancer activity of thiosemicarbazides with a phenoxy moiety, we designed nineteen phenoxyacetylthiosemicarbazide derivatives and four of them acting as potential dual-ligands for both cancers. All of the compounds were characterized by their melting points and 1H, 13C NMR and IR spectra. For selected compounds, X-ray investigations were carried out to confirm the synthesis pathway, identify the tautomeric form and intra- and intermolecular interaction in the crystalline state. The conformational preferences and electronic structure of molecules were investigated by theoretical calculation method. Lipophilicity of compounds (log kw) was determined using isocratic reversed phase/high pressure liquid chromatography RP-18. For the obtained compounds, in vitro tests were carried out on four melanoma cell lines (A375, G-361, SK-MEL2, SK-MEL28), four prostate cancer cell lines (PC-3, DU-145, LNCaP, VcaP) and a normal human fibroblast cell line (BJ). The most active compounds turned out to be F6. Cell cycle analysis, apoptosis detection, CellROX staining and mitochondrial membrane potential analysis were performed for the most sensitive cancer cells treated with most active compounds. DSC analysis was additionally performed for selected compounds to determine their purity, compatibility, and thermal stability. The process of prooxidation was proposed as a potential mechanism of anticancer activity.


Assuntos
Antineoplásicos , Melanoma , Neoplasias da Próstata , Masculino , Humanos , Antineoplásicos/uso terapêutico , Ligantes , Linhagem Celular Tumoral , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/metabolismo , Apoptose , Melanoma/tratamento farmacológico , Proliferação de Células
7.
J Phys Chem Lett ; 14(24): 5618-5623, 2023 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-37310235

RESUMO

This work aimed to investigate the adsorption of toluene in UiO-66 materials. Toluene is a volatile, aromatic organic molecule that is recognized as the main component of VOCs. These compounds are harmful to the environment as well as to living organisms. One of the materials that allows the capture of toluene is the UiO-66. A satisfactory representation of the calculated isotherm steep front and sorption capacity compared to the experiment was obtained by reducing the force field σ parameter by 5% and increasing ε by 5%. Average occupation profiles, which are projections of the positions of molecules during pressure increase, as well as RDFs, which are designed to determine the distance of the center of mass of the toluene molecule from organic linkers and metal clusters, respectively, made it possible to explain the mechanism of toluene adsorption on the UiO-66 material.

8.
Cancers (Basel) ; 14(19)2022 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-36230560

RESUMO

Micro- and nanoplatics have been already reported to be potential carcinogenic/mutagenic substances that might cause DNA damage, leading to carcinogenesis. Thus, the effects of micro- and nanoplastics exposure on human health are currently being investigated extensively to establish clear relationships between those substances and health consequences. So far, it has been observed that there exists a definite correlation between exposure to micro- and nanoplastic particles and the onset of several cancers. Therefore, we have conducted research using PubMed, Web of Science, and Scopus databases, searching for all the research papers devoted to cancers that could be potentially related to the subject of exposure to nano- and microplastics. Ultimately, in this paper, we have discussed several cancers, including hepatocellular carcinoma, pancreatic cancer, pancreatic ductal adenocarcinoma, biliary tract cancer, and some endocrine-related cancers.

9.
Int J Mol Sci ; 23(16)2022 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-36012142

RESUMO

The terminal phenoxy group is a moiety of many drugs in use today. Numerous literature reports indicated its crucial importance for biological activity; thus, it is a privileged scaffold in medicinal chemistry. This review focuses on the latest achievements in the field of novel potential agents bearing a terminal phenoxy group in 2013-2022. The article provided information on neurological, anticancer, potential lymphoma agent, anti-HIV, antimicrobial, antiparasitic, analgesic, anti-diabetic as well as larvicidal, cholesterol esterase inhibitors, and antithrombotic or agonistic activities towards the adrenergic receptor. Additionally, for selected agents, the Structure-Activity-Relationship (SAR) is also discussed. Thus, this study may help the readers to better understand the nature of the phenoxy group, which will translate into rational drug design and the development of a more efficient drug. To the best of our knowledge, this is the first review devoted to an in-depth analysis of the various activities of compounds bearing terminal phenoxy moiety.


Assuntos
Anti-Infecciosos , Antineoplásicos , Anti-Infecciosos/farmacologia , Antineoplásicos/farmacologia , Química Farmacêutica , Desenho de Fármacos , Estrutura Molecular , Relação Estrutura-Atividade
10.
Int J Mol Sci ; 23(11)2022 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-35682764

RESUMO

Malignant melanoma (MM) is the most lethal skin cancer. Despite a 4% reduction in mortality over the past few years, an increasing number of new diagnosed cases appear each year. Long-term therapy and the development of resistance to the drugs used drive the search for more and more new agents with anti-melanoma activity. This review focuses on the most recent synthesized anti-melanoma agents from 2020-2022. For selected agents, apart from the analysis of biological activity, the structure-activity relationship (SAR) is also discussed. To the best of our knowledge, the following literature review delivers the latest achievements in the field of new anti-melanoma agents.


Assuntos
Antineoplásicos , Melanoma , Neoplasias Cutâneas , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Humanos , Melanoma/patologia , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Proto-Oncogênicas B-raf , Neoplasias Cutâneas/tratamento farmacológico , Neoplasias Cutâneas/patologia , Melanoma Maligno Cutâneo
11.
Bioorg Chem ; 123: 105765, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35427940

RESUMO

The methods of fighting cancer are far from ideal, therefore it is necessary to search for innovative and effective drugs. In our work, we present pyrazole derivatives and their modifications with polymer microspheres as potential anticancer agents. Molecular and crystal structures of pyrazole derivatives were determined an X-ray analysis and characterized by theoretical calculations. Modifications of cross-linked polymer microspheres with pyrazole derivatives were made on the basis of divinylbenzene and glycidyl methacrylate. The in vitro antiproliferative activity of the pyrazole derivatives and their modified microspheres was assessed against a normal cell line, namely monkey epithelial renal cells (GMK) and cancer cell lines, such as human hepatocellular carcinoma cell line (HepG2), human breast adenocarcinoma cell line (MCF-7) as well as human lung adenocarcinoma cell line (A549), using the MTT assay. All the tested pyrazole derivatives and the polymer microspheres modified by them showed antiproliferative activity in vitro. Two of the modified substances showed the greatest ability to inhibit divisions of all cancer cells. In order to determine a potential target, molecular docking was performed. In silico studies carried out with the use of the human EphB1 receptor revealed that the analyzed compounds bound to the EphB1 binding site, and the compounds with the highest antiproliferative activity showed a better fit to the active site.


Assuntos
Antineoplásicos , Neoplasias , Antineoplásicos/química , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Proliferação de Células , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Microesferas , Simulação de Acoplamento Molecular , Estrutura Molecular , Polímeros/farmacologia , Pirazóis/química , Pirazóis/farmacologia , Relação Estrutura-Atividade
12.
Biomolecules ; 12(2)2022 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-35204651

RESUMO

In this paper, thiosemicarbazide derivatives were synthesized as potential anticancer agents. X-ray investigations for 1-(2,4-dichlorophenoxy)acetyl-4-(2-fluorophenyl) thiosemicarbazide, 1-(2,4-dichlorophenoxy)acetyl-4-(4-metylothiophenyl)thiosemicarbazide and 1-(2,4-di chlorophenoxy)acetyl-4-(4-iodophenyl)thiosemicarbazide were carried out in order to confirm the synthesis pathways, identify their tautomeric forms, analyze the conformational preferences of molecules, and identify intra- and intermolecular interactions in the crystalline state. TLC and RP-HPLC analyses were used to determine lipophilicity. The lipophilicity analysis revealed that the 4-substituted halogen derivatives of thiosemicarbazides showed greater lipophilicity compared with 2-substituted derivatives. The optimal range of lipophilicity for biologically active compounds logkw is between 4.14 and 4.78. However, as the analysis showed, it is not a decisive parameter. The cytotoxicity of the new compounds was evaluated against both the G-361 and BJ cell lines. Cytotoxicity analyses and cell-cycle and cell apoptosis assays were performed. The MTT test demonstrated that three compounds were cytotoxic to melanoma cells and not toxic to normal fibroblasts in the concentration range used. The cell cycle analysis showed that the compounds had no significant effect on the cell cycle inhibition. An extensive gene expression analysis additionally revealed that all compounds tested downregulated the expression of dihydroorotate dehydrogenase (DHODH). DHODH is a mitochondrial enzyme involved in the de novo synthesis of pyrimidines. Due to the rapid rate of cancer cell proliferation and the increased demand for nucleotide synthesis, it has become a potential therapeutic target.


Assuntos
Antineoplásicos , Melanoma , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Proliferação de Células , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Estrutura Molecular , Semicarbazidas , Relação Estrutura-Atividade
13.
Commun Chem ; 5(1): 120, 2022 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-36697947

RESUMO

Structural defects in metal-organic frameworks can be exploited to tune material properties. In the case of UiO-66 material, they may change its nature from hydrophobic to hydrophilic and therefore affect the mechanism of adsorption of polar and non-polar molecules. In this work, we focused on understanding this mechanism during adsorption of molecules with different dipole moments, using the standard volumetric adsorption measurements, IR spectroscopy, DFT + D calculations, and Monte Carlo calculations. Average occupation profiles showed that polar and nonpolar molecules change their preferences for adsorption sites. Hence, defects in the structure can be used to tune the adsorption properties of the MOF as well as to control the position of the adsorbates within the micropores of UiO-66.

14.
Molecules ; 26(12)2021 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-34200976

RESUMO

In this article, the results of computational structural studies on Al-containing zeolites, via periodic DFT + D modelling and FDM (Finite Difference Method) to solve the Schrödinger equation (FDMNES) for XAS simulations, corroborated by EXAFS (Extended X-ray Absorption Fine Structure) spectroscopy and PXRD (powder X-ray diffractometry), are presented. The applicability of Radial Distribution Function (RDF) to screen out the postulated zeolite structure is also discussed. The structural conclusions are further verified by HR-TEM imaging.

15.
Chemistry ; 27(59): 14653-14659, 2021 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-34314527

RESUMO

The rapidly rising level of carbon dioxide in the atmosphere resulting from human activity is one of the greatest environmental problems facing our civilization today. Most technologies are not yet sufficiently developed to move existing infrastructure to cleaner alternatives. Therefore, techniques for capturing carbon dioxide from emission sources may play a key role at the moment. The structure of the UiO-66 material not only meets the requirement of high stability in contact with water vapor but through the water pre-adsorbed in the pores, the selectivity of carbon dioxide adsorption is increased. We successfully applied the recently developed methodology for water adsorption modelling. It allowed to elucidate the influence of water on CO2 adsorption and study the mechanism of this effect. We showed that water is adsorbed in octahedral cage and stands for promotor for CO2 adsorption in less favorable space than tetrahedral cages. Water plays a role of a mediator of adsorption, what is a general idea of improving affinity of adsorbate. On the basis of pre-adsorption of methanol as another polar solvent, we have shown that the adsorption sites play a key role here, and not, as previously thought, only the interaction between the solvent and quadrupole carbon dioxide. Overall, we explained the mechanism of increased CO2 adsorption in the presence of water and methanol, as polar solvents, in the UiO-66 pores for a potential post-combustion carbon dioxide capture application.


Assuntos
Dióxido de Carbono , Água , Adsorção , Humanos , Metanol , Solventes
16.
ACS Appl Mater Interfaces ; 13(25): 29820-29826, 2021 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-34137584

RESUMO

Proton-conducting metal-organic frameworks (MOFs) have been gaining attention for their role as solid-state electrolytes in various devices for energy conversion and storage. Here, we present a convenient strategy for inducing and tuning of superprotonic conductivity in MOFs with open metal sites via postsynthetic incorporation of charge carriers enabled by solvent-free mechanochemistry and anion coordination. This scalable approach is demonstrated using a series of CPO-27/MOF-74 [M2(dobdc); M = Mg2+, Zn2+, Ni2+; dobdc = 2,5-dioxido-1,4-benzenedicarboxylate] materials loaded with various stoichiometric amounts of NH4SCN. The modified materials are not achievable by conventional immersion in solutions. Periodic density functional theory (DFT) calculations, supported by infrared (IR) spectroscopy and powder X-ray diffraction, provide structures of the modified MOFs including positions of inserted ions inside the [001] channels. Despite the same type and concentration of proton carriers, the MOFs can be arranged in the increasing order of conductivity (Ni < Zn < Mg), which strongly correlates with amounts of water vapor adsorbed. We conclude that the proton conductivity of CPO-27 materials can be controlled over a few orders of magnitude by metal selection and mechanochemical dosing of ammonium thiocyanate. The dosing of a solid is shown for the first time as a useful, simple, and ecological method for the control of material conductivity.

17.
Molecules ; 26(6)2021 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-33801999

RESUMO

This review puts the development of molecular modeling methods in the context of their applications to zeolitic active sites. We attempt to highlight the utmost necessity of close cooperation between theory and experiment, resulting both in advances in computational methods and in progress in experimental techniques.

18.
Pharmaceutics ; 12(6)2020 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-32560381

RESUMO

In this study, important H1 antihistaminic drugs, i.e., emedastine (EME), epinastine (EPI), and ketotifen (KET), were irradiated with UV/Vis light (300-800 nm) in solutions of different pH values. Next, they were analyzed by new high performance liquid chromatography (HPLC) methods, in order to estimate the percentage of degradation and respective kinetics. Subsequently, ultra-performance liquid chromatography tandem-mass spectrometry (UPLC-MS/MS) was used to identify their photodegradation products and to propose degradation pathways. In addition, the peroxidation of linoleic acid and generation of singlet oxygen (SO) and superoxide anion (SA) were examined, together with the molar extinction coefficient (MEC) evaluation, to estimate their phototoxic risk. The photodegradation of all EME, EPI, and KET followed pseudo first-order kinetics. At pH values of 7.0 and 10.0, EPI was shown to be rather stable. However, its photostability was lower at pH 3.0. EME was shown to be photolabile in the whole range of pH values. In turn, KET was shown to be moderately labile at pH 3.0 and 7.0. However, it degraded completely in the buffer of pH 10.0. As a result, several photodegradation products were separated and identified using the UPLC-MS/MS method. Finally, our ROS assays showed a potent phototoxic risk in the following drug order: EPI < EME < KET. All of these results may be helpful for manufacturing, storing, and applying these substantial drugs, especially in their ocular formulations.

19.
Biomolecules ; 10(2)2020 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-32069994

RESUMO

hiosemicarbazide is a useful structural moiety that has the biological potential. Optimization of this structure can result in groundbreaking discovery of a new class of therapeutic agents. In the light of this, 1-(2,4-dichlorophenoxy)acetyl-4-(1-naphthyl)thiosemicarbazide (1) and 1,4-bis[(2,4-dichlorophenoxy)acetylthiosemicarbazide]phenyl (2) were synthesized and characterized by spectroscopic method. Cytotoxicity of obtained compounds was evaluated on MKN74 gastric cancer cell line and human skin fibroblast BJ based on methylthiazolyldiphenyl-tetrazolium bromide (MTT) test. The apoptosis/necrosis and cell cycle analysis were conducted using image cytometry. Additionally, in DNA of treated cells, abasic sites (AP) and double strands breaks (DSB) presence were measured. Intercalating properties of active compounds were evaluated using the UV-spectroscopic method. Among newly synthesized derivatives, compound 2 showed toxic effects on gastric cancer cells with simultaneous lack of toxicity to normal fibroblasts. Cell cycle analysis revealed that both compounds influence cell division mainly at the stage of replication. Simultaneously with DNA synthesis disorders, DNA damages like AP-sites and DSBs were observed. Spectroscopic studies revealed possible DNA intercalating properties of tested compounds. Obtained results indicate that the newly synthesized thiosemicarbazide derivatives are a promising group of compounds with potential anticancer activity resulted from interactions with DNA and cell cycle interrupt.


Assuntos
Ácido 2,4-Diclorofenoxiacético/farmacologia , Semicarbazidas/farmacologia , Neoplasias Gástricas/tratamento farmacológico , Ácido 2,4-Diclorofenoxiacético/metabolismo , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , DNA/química , Ensaios de Seleção de Medicamentos Antitumorais/métodos , Humanos , Substâncias Intercalantes/farmacologia , Simulação de Acoplamento Molecular , Estrutura Molecular , Semicarbazidas/metabolismo , Neoplasias Gástricas/metabolismo , Relação Estrutura-Atividade
20.
Int J Mol Sci ; 22(1)2020 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-33383973

RESUMO

Epithelial-mesenchymal transition (EMT) constitutes one of the hallmarks of carcinogenesis consisting in the re-differentiation of the epithelial cells into mesenchymal ones changing the cellular phenotype into a malignant one. EMT has been shown to play a role in the malignant transformation and while occurring in the tumor microenvironment, it significantly affects the aggressiveness of gastric cancer, among others. Importantly, after EMT occurs, gastric cancer patients are more susceptible to the induction of resistance to various therapeutic agents, worsening the clinical outcome of patients. Therefore, there is an urgent need to search for the newest pharmacological agents targeting EMT to prevent further progression of gastric carcinogenesis and potential metastases. Therapies targeted at EMT might be combined with other currently available treatment modalities, which seems to be an effective strategy to treat gastric cancer patients. In this review, we have summarized recent advances in gastric cancer treatment in terms of targeting EMT specifically, such as the administration of polyphenols, resveratrol, tangeretin, luteolin, genistein, proton pump inhibitors, terpenes, other plant extracts, or inorganic compounds.


Assuntos
Transição Epitelial-Mesenquimal , Neoplasias Gástricas/patologia , Animais , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Transformação Celular Neoplásica/metabolismo , Suscetibilidade a Doenças , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Humanos , Espécies Reativas de Oxigênio/metabolismo , Resveratrol/farmacologia , Neoplasias Gástricas/etiologia , Neoplasias Gástricas/metabolismo , Microambiente Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...