Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 16(29): 38345-38354, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39010705

RESUMO

Formation of laser-induced periodic surface structures (LIPSS) is known as a fast and robust method of functionalization of material surfaces. Of particular interest are LIPSS that manifest as periodic modulation of phase state of the material, as it implies reversibility of phase modification that constitute rewritable LIPSS, and recently was demonstrated for chalcogenide phase change materials (PCMs). Due to remarkable properties of chalcogenide PCMs─nonvolatality, prominent optical contrast and ns switching speed─such novel phase change LIPSS hold potential for exciting applications in all-optical tunable photonics. In this work we explore phase change LIPSS formation in thin films of Ge2Sb2Te5 (GST) integrated with planar and rib waveguides. We demonstrate that by fine-tuning laser radiation, the morphology of phase change LIPSS can be controlled, including their period and fill factor, and investigate the limitations of multicycle rewriting of the structures. We also demonstrate the formation of phase change LIPSS on a 1D waveguide, which has potential for use as tunable Bragg filters or structures for on-demand light decoupling into the far-field. The presented concept of applying phase change LIPSS offers a promising approach to enable fast and simple tuning in integrated photonic devices.

2.
Dalton Trans ; 52(47): 17861-17872, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-37975537

RESUMO

A joint structural and spectroscopic study of simple bis-cyclometataled rhodium(III) and iridium(III) complexes with 2-phenylpyridine and aromatic ß-diketones (dibenzoylmethane, benzoylacetone, benzoyltrifluoroacetone, and 2-thenoyltrifluoroacetone) reveals an interplay between the solid-state emission efficiency and crystal packing peculiarities of the complexes. Although the prepared rhodium(III) cyclometalates are isostructural with iridium(III) analogues, different types of π-π interactions are responsible for the aggregation-induced emission (AIE) of the complexes depending on the metal ion. For iridium(III) complexes, pyridyl-pyridyl contacts are essential for AIE because they lower the energy of the emissive metal-to-ligand charge transfer state below that of the non-emissive state located at the ancillary ligand. Enabled by phenyl-pyridyl interactions partially blocking the population of non-emissive d-d states, solid-state phosphorescence enhancement is successfully achieved in a rhodium(III) complex with ancillary benzoyltrifluoroacetone, which is the first example of a rhodium complex exhibiting AIE.

3.
Dalton Trans ; 52(44): 16261-16275, 2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-37855226

RESUMO

A judicious selection of substituents in cyclometalating 2-arylbenzimidazoles and an ancillary aromatic 1,3-diketone enabled the creation of heteroleptic iridium(III) complexes demonstrating strong light absorption up to 500 nm (ε ≈ 10 000-12 000 M-1 cm-1). The complexes, which were studied by various spectroscopic techniques, single-crystal X-ray diffraction and cyclic voltammetry, displayed tunable absorption maxima depending on the nature of substituents and their positions. The experimental study was corroborated by quantum chemical calculations, which showed an increased contribution of intraligand charge transfer transitions to the visible light absorption in the case of complexes containing electron-withdrawing substituents in the ligands. Despite being of high intensity, some of these transitions are responsible for the formation of the excited states located at large distances from the 'anchoring' fragment incorporated in the ancillary ligand. In turn, incorporation of electron-donating substituents at the para-position to the Ir-C bonds increases the number of excited states located on the ancillary ligand. The destabilization of the HOMO, which is caused by the increase in the electron-donating ability of the substituents in the metalated rings, translated into negative shifts of the Ir4+/Ir3+ redox potential, affecting, in some cases, the degree of electrochemical reversibility of the complexes. Several complexes having strong light-harvesting characteristics and undergoing reversible oxidation in the appropriate potential range were used for coating the TiO2 photoanodes, which reached an efficiency of 2.15% upon irradiation with the standard AM 1.5 spectrum.

4.
Materials (Basel) ; 16(13)2023 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-37444839

RESUMO

Chalcogenide vitreous semiconductors (ChVSs) find application in rewritable optical memory storage and optically switchable infrared photonic devices due to the possibility of fast and reversible phase transitions, as well as high refractive index and transmission in the near- and mid-infrared spectral range. Formed on such materials, laser-induced periodic surface structures (LIPSSs), open wide prospects for increasing information storage capacity and create polarization-sensitive optical elements of infrared photonics. In the present work, a possibility to produce LIPSSs under femtosecond laser irradiation (pulse duration 300 fs, wavelength 515 nm, repetition rate up to 2 kHz, pulse energy ranged 0.03 to 0.5 µJ) is demonstrated on a large (up to 5 × 5 mm2) area of arsenic sulfide (As2S3) and arsenic selenide (As2Se3) ChVS films. Scanning electron and atomic force microscopy revealed that LIPSSs with various periods (170-490 nm) and orientations can coexist within the same irradiated region as a hierarchical structure, resulting from the interference of various plasmon polariton modes generated under intense photoexcitation of nonequilibrium carriers within the film. The depth of the structures varied from 30 to 100 nm. The periods and orientations of the formed LIPSSs were numerically simulated using the Sipe-Drude approach. A good agreement of the calculations with the experimental data was achieved.

5.
Materials (Basel) ; 15(10)2022 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-35629526

RESUMO

Ge2Sb2Te5 (GST225) looks to be a promising material for rewritable memory devices due to its relatively easy processing and high optical and electrophysical contrast for the crystalline and amorphous phases. In the present work, we combined the possibilities of crystallization and anisotropic structures fabrication using femtosecond laser treatment at the 1250 nm wavelength of 200 nm thin amorphous GST225 films on silicon oxide/silicon substrates. A raster treatment mode and photoexcited surface plasmon polariton generation allowed us to produce mutually orthogonal periodic structures, such as scanline tracks (the period is 120 ± 10 µm) and laser-induced gratings (the period is 1100 ± 50 nm), respectively. Alternating crystalline and amorphous phases at the irradiated surfaces were revealed according to Raman spectroscopy and optical microscopy studies for both types of structures. Such periodic modulation leads to artificial optical and electrophysical anisotropy. Reflectance spectra in the near infrared range differ for various polarizations of probing light, and this mainly results from the presence of laser-induced periodic surface structures. On the other hand, the scanline tracks cause strong conductivity anisotropy for dc measurements in the temperature range of 200-400 K. The obtained results are promising for designing new GST225-based memory devices in which anisotropy may promote increasing the information recording density.

6.
ACS Appl Mater Interfaces ; 13(27): 32031-32036, 2021 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-34191479

RESUMO

Laser-induced periodic surface structures (LIPSS) can be fabricated in virtually all types of solid materials and show great promise for efficient and scalable production of surface patterns with applications in various fields from photonics to engineering. While the majority of LIPSS manifest as modifications of the surface relief, in special cases, laser impact can also lead to periodic modulation of the material phase state. Here, we report on the fabrication of high-quality periodic structures in the films of phase-change material Ge2Sb2Te5 (GST). Due to considerable contrast of the refractive index of GST in its crystalline and amorphous states, the fabricated structures provide strong spatial modulation of the optical properties, which facilitates their applications. By changing the excitation laser wavelength, we observe the scaling of the grating period as well as transition between formation of different types of LIPSS. We optimize the laser exposure routine to achieve large-scale high-quality phase-change gratings with controllable period and demonstrate their reversible tunability through intermediate amorphization steps. Our results reveal the prospects of fast and rewritable fabrication of high-quality periodic structures for photonics and can serve as a guideline for further development of phase-change material-based optical elements.

7.
Polymers (Basel) ; 12(12)2020 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-33260930

RESUMO

For the first time, electroactive nanocomposite elastomers based on polydimethylsiloxane and filled with rod-like α-MnO2 nanoparticles have been obtained. The curing of the filled elastomer in an electric field, resulting in the ordering of the α-MnO2 particles, had a significant effect on the degree of polymer crosslinking, as well as on the electrorheological characteristics of the nanocomposites obtained through this process, namely the values of the storage and loss moduli. The dielectric spectra of filled elastomers in the frequency range 25-106 Hz were analysed in terms of interfacial relaxation processes. It has been shown, for the first time, that the application of an electric field leads to a decrease in the value of the Payne effect in composite elastomers. Analysis of the rheological effect in the obtained materials has demonstrated the possibility of designing highly efficient electrorheological elastomers that change their elastic properties by 4.3 times in electric fields of up to 2 kV/mm.

8.
Dalton Trans ; 49(46): 16935-16945, 2020 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-33188375

RESUMO

Cyclometalated Ru(ii) complexes with 2-arylbenzimidazole antenna ligands bearing electron-donor/withdrawing substituents and anchoring 4,4'-dimethoxycarbonyl-2,2'-bipyridine have been prepared and their structure, optical and electrochemical properties have been studied. The complexes possess enhanced light-harvesting characteristics compared to those of the standard N719 dye and absorb light up to 750 nm. In addition, they demonstrate reversible redox behavior with Ru3+/Ru2+ potentials being finely tuned by the change of the electron-donating ability of cyclometalated ligands. After a mild hydrolysis of dimethoxycarbonyl groups the excellent optical properties of the complexes remain unchanged and they show good efficiency when tested in dye-sensitized solar cells.

9.
Molecules ; 24(18)2019 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-31540041

RESUMO

The electrorheological (ER) effect was experimentally observed in dielectric suspensions containing tungsten oxide (WO3) modified with surfactant molecules (sodium dodecyl sulfate (SDS) and dodecylamine (DDA)) in electric fields up to several kilovolts per millimeter. The dielectric properties of WO3 suspensions in silicone oil were analyzed, depending on the frequency of the electric field, in the range from 25 to 106 Hz. Unmodified WO3 suspensions, as well as suspensions modified with sodium dodecyl sulfate, were shown to exhibit a positive electrorheological effect, whereas suspensions modified with dodecylamine demonstrated a negative electrorheological effect. The quantitative characteristics of the negative electrorheological effect in the strain-compression and shear regimes were obtained for the first time. Visualization experiments were performed to see the chain structures formed by WO3 particles modified with sodium dodecyl sulfate, as well as for dynamic electroconvection in electrorheological fluids containing WO3 modified with dodecylamine. The negative electrorheological effect was shown to be associated with the processes of phase separation in the electric field, which led to a multiplicative effect and a strong electroconvection of the suspension at field strengths above 1 kV/mm.


Assuntos
Aminas/química , Técnicas Eletroquímicas , Óxidos/química , Reologia , Dodecilsulfato de Sódio/química , Tensoativos/química , Tungstênio/química , Suspensões
10.
Rev Sci Instrum ; 90(12): 123313, 2019 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-31893855

RESUMO

One of the most prospective electrical and optical nonvolatile memory types is the phase change memory based on chalcogenide materials, particularly Ge2Sb2Te5. Introduction of dopants is an effective method for the purposeful change of Ge2Sb2Te5 thin film properties. In this work, we used the ion implantation method for the introduction of In and Sn into Ge2Sb2Te5 thin films by a Multipurpose Test Bench (MTB) at the National Research Center "Kurchatov Institute"-Institute for Theoretical and Experimental Physics. For Sn and In ion implantation into Ge2Sb2Te5, the following MTB elements were used: a vacuum arc ion source, an electrostatic focusing system, and a system for current and beam profile measurements. The MTB parameters for Sn and In ion implantation and its effect on the material properties are presented. Implanted Ge2Sb2Te5 thin films were irradiated by femtosecond laser pulses. It was shown that the ion implantation resulted in a decrease in the threshold laser fluence necessary for crystallization compared to the undoped Ge2Sb2Te5.

11.
Chem Asian J ; 11(4): 604-12, 2016 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-26629883

RESUMO

A series of new tetranuclear heterometallic Zn(II) -Eu(III) complexes have been synthesized, that is, (bpy)2 Zn2Eu2 (naph)10 (1), (bpy)2 Zn2Eu2 (naph)8 (NO3)2 (2), and (phen)2 Zn2Eu2 (naph)8 (NO3)2 (3), and other ones, where naph(-) is the 1-naphthoate anion, bpy=2,2'-bipyridyl, and phen=1,10-phenanthroline. The solid-phase complexes consist of large supramolecular ensembles due to stacking interactions between the aromatic ligands. Photoluminescence (PL) measurements were carried out to study PL spectra, lifetimes and quantum yields (QY) of the synthesized complexes at different temperatures. The external QY for the solid phases of complexes under UV excitation was found to exceed 20 %. It has been shown that partial replacement of naphthoate ligands in the coordination environment of Eu(3+) by NO3(-) anions influences the PL properties. To investigate the behavior of these complexes in solvent, we dissolved complex 3 in MeCN, put it on a transparent glass as a substrate, and studied the PL properties at room temperature.

12.
J Fluoresc ; 25(3): 763-75, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25822191

RESUMO

Novel donor-π-acceptor dyes bearing the pyrimidine unit as an electron-withdrawing group have been synthesized by using combination of two processes, based on the microwave-assisted Suzuki cross-coupling reaction and nucleophilic aromatic substitution of hydrogen. Spectral properties of the obtained dyes in six aprotic solvents of various polarities have been studied by ultraviolet-visible and fluorescence spectroscopy. In contrast to the absorption spectra, fluorescence emission spectra displayed a strong dependence from their solvent polarities. The nature of the observed long wavelength maxima has been elucidated by means of quantum chemical calculations. The electrochemical properties of these dyes have been investigated by using cyclic voltammetry, while their photovoltaic performance was evaluated by a device fabrication study. The experimental and calculation data show that all of the dyes can be regarded as potentially good photosensitizers for dye-sensitized solar cells.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...