Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Appl Environ Microbiol ; 85(6)2019 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-30658975

RESUMO

This study assessed the dispersal of five bacterial communities from contrasting compartments along a fractured clay till depth profile comprising plow layer soil, preferential flow paths (biopores and the tectonic fractures below), and matrix sediments, down to 350 cm below the surface. A recently developed expansion of the porous surface model (PSM) was used to capture bacterial communities dispersing under controlled hydration conditions on a soil-like surface. All five communities contained bacteria capable of active dispersal under relatively low hydration conditions (-3.1 kPa). Further testing of the plow layer community revealed active dispersal even at matric potentials of -6.3 to -8.4 kPa, previously thought to be too dry for dispersal on the PSM. Using 16S rRNA gene amplicon sequencing, the dispersing communities were found to be less diverse than their corresponding total communities. The dominant dispersers in most compartments belonged to the genus Pseudomonas and, in the plow layer soil, to Rahnella as well. An exception to this was the dispersing community in the matrix at 350 cm below the surface, which was dominated by Pantoea Hydrologically connected compartments shared proportionally more dispersing than nondispersing amplicon sequence variants (ASVs), suggesting that active dispersal is important for colonizing these compartments. These results highlight the importance of including soil profile heterogeneity when assessing the role of active dispersal and contribute to discerning the importance of active dispersal in the soil environment.IMPORTANCE The ability to disperse is considered essential for soil bacteria colonization and survival, yet very little is known about the dispersal ability of communities from different heterogeneous soil compartments. Important factors for dispersal are the thickness and connectivity of the liquid film between soil particles. The present results from a fractured clay till depth profile suggest that dispersal ability is common in various soil compartments and that most are dominated by a few dispersing taxa. Importantly, an increase in shared dispersers among the preferential flow paths of the clay till suggests that active dispersal plays a role in the successful colonization of these habitats.


Assuntos
Bactérias/isolamento & purificação , Argila/química , Microbiologia do Solo , Bactérias/classificação , Bactérias/genética , DNA Bacteriano/genética , Ecossistema , RNA Ribossômico 16S/genética
2.
Appl Environ Microbiol ; 84(7)2018 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-29374034

RESUMO

In this study, we developed a method that provides profiles of community-level surface dispersal from environmental samples under controlled hydration conditions and enables us to isolate and uncover the diversity of the fastest bacterial dispersers. The method expands on the porous surface model (PSM), previously used to monitor the dispersal of individual bacterial strains in liquid films at the surface of a porous ceramic disc. The novel procedure targets complex communities and captures the dispersed bacteria on a solid medium for growth and detection. The method was first validated by distinguishing motile Pseudomonas putida and Flavobacterium johnsoniae strains from their nonmotile mutants. Applying the method to soil and lake water bacterial communities showed that community-scale dispersal declined as conditions became drier. However, for both communities, dispersal was detected even under low-hydration conditions (matric potential, -3.1 kPa) previously proven too dry for P. putida strain KT2440 motility. We were then able to specifically recover and characterize the fastest dispersers from the inoculated communities. For both soil and lake samples, 16S rRNA gene amplicon sequencing revealed that the fastest dispersers were substantially less diverse than the total communities. The dispersing fraction of the soil microbial community was dominated by Pseudomonas species cells, which increased in abundance under low-hydration conditions, while the dispersing fraction of the lake community was dominated by Aeromonas species cells and, under wet conditions (-0.5 kPa), also by Exiguobacterium species cells. The results gained in this study bring us a step closer to assessing the dispersal ability within complex communities under environmentally relevant conditions.IMPORTANCE Dispersal is a key process of bacterial community assembly, and yet, very few attempts have been made to assess bacterial dispersal at the community level, as the focus has previously been on pure-culture studies. A crucial factor for dispersal in habitats where hydration conditions vary, such as soils, is the thickness of the liquid films surrounding solid surfaces, but little is known about how the ability to disperse in such films varies within bacterial communities. Therefore, we developed a method to profile community dispersal and identify fast dispersers on a rough surface resembling soil surfaces. Our results suggest that within the motile fraction of a bacterial community, only a minority of the bacterial types are able to disperse in the thinnest liquid films. During dry periods, these efficient dispersers can gain a significant fitness advantage through their ability to colonize new habitats ahead of the rest of the community.


Assuntos
Técnicas Bacteriológicas/métodos , Lagos/microbiologia , Microbiota , Microbiologia do Solo , Modelos Biológicos , RNA Bacteriano/análise , RNA Ribossômico 16S/análise , Análise de Sequência de RNA , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...