Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 14(5): e0215945, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31042762

RESUMO

The composition of the vaginal microbiome, including both the presence of pathogens involved in sexually transmitted infections (STI) as well as commensal microbiota, has been shown to have important associations for a woman's reproductive and general health. Currently, healthcare providers cannot offer comprehensive vaginal microbiome screening, but are limited to the detection of individual pathogens, such as high-risk human papillomavirus (hrHPV), the predominant cause of cervical cancer. There is no single test on the market that combines HPV, STI, and microbiome screening. Here, we describe a novel inclusive vaginal health assay that combines self-sampling with sequencing-based HPV detection and genotyping, vaginal microbiome analysis, and STI-associated pathogen detection. The assay includes genotyping and detection of 14 hrHPV types, 5 low-risk HPV types (lrHPV), as well as the relative abundance of 31 bacterial taxa of clinical importance, including Lactobacillus, Sneathia, Gardnerella, and 3 pathogens involved in STI, with high sensitivity, specificity, and reproducibility. For each of these taxa, reference ranges were determined in a group of 50 self-reported healthy women. The HPV sequencing portion of the test was evaluated against the digene High-Risk HPV HC2 DNA test. For hrHPV genotyping, agreement was 95.3% with a kappa of 0.804 (601 samples); after removal of samples in which the digene hrHPV probe showed cross-reactivity with lrHPV types, the sensitivity and specificity of the hrHPV genotyping assay were 94.5% and 96.6%, respectively, with a kappa of 0.841. For lrHPV genotyping, agreement was 93.9% with a kappa of 0.788 (148 samples), while sensitivity and specificity were 100% and 92.9%, respectively. This novel assay could be used to complement conventional cervical cancer screening, because its self-sampling format can expand access among women who would otherwise not participate, and because of its additional information about the composition of the vaginal microbiome and the presence of pathogens.


Assuntos
Microbiota , Papillomaviridae/genética , Infecções por Papillomavirus/diagnóstico , Infecções Sexualmente Transmissíveis/diagnóstico , Vagina/virologia , Adolescente , Adulto , Proteínas do Capsídeo/genética , DNA Viral/genética , DNA Viral/isolamento & purificação , Feminino , Gardnerella/genética , Gardnerella/isolamento & purificação , Genótipo , Humanos , Lactobacillus/genética , Lactobacillus/isolamento & purificação , Limite de Detecção , Pessoa de Meia-Idade , Proteínas Oncogênicas Virais/genética , Papillomaviridae/isolamento & purificação , Infecções por Papillomavirus/virologia , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/metabolismo , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Infecções Sexualmente Transmissíveis/virologia , Vagina/microbiologia , Adulto Jovem
3.
Front Public Health ; 6: 77, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29686981

RESUMO

In most industrialized countries, screening programs for cervical cancer have shifted from cytology (Pap smear or ThinPrep) alone on clinician-obtained samples to the addition of screening for human papillomavirus (HPV), its main causative agent. For HPV testing, self-sampling instead of clinician-sampling has proven to be equally accurate, in particular for assays that use nucleic acid amplification techniques. In addition, HPV testing of self-collected samples in combination with a follow-up Pap smear in case of a positive result is more effective in detecting precancerous lesions than a Pap smear alone. Self-sampling for HPV testing has already been adopted by some countries, while others have started trials to evaluate its incorporation into national cervical cancer screening programs. Self-sampling may result in more individuals willing to participate in cervical cancer screening, because it removes many of the barriers that prevent women, especially those in low socioeconomic and minority populations, from participating in regular screening programs. Several studies have shown that the majority of women who have been underscreened but who tested HPV-positive in a self-obtained sample will visit a clinic for follow-up diagnosis and management. In addition, a self-collected sample can also be used for vaginal microbiome analysis, which can provide additional information about HPV infection persistence as well as vaginal health in general.

4.
PLoS One ; 12(5): e0176555, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28467461

RESUMO

Changes in the relative abundances of many intestinal microorganisms, both those that naturally occur in the human gut microbiome and those that are considered pathogens, have been associated with a range of diseases. To more accurately diagnose health conditions, medical practitioners could benefit from a molecular, culture-independent assay for the quantification of these microorganisms in the context of a healthy reference range. Here we present the targeted sequencing of the microbial 16S rRNA gene of clinically relevant gut microorganisms as a method to provide a gut screening test that could assist in the clinical diagnosis of certain health conditions. We evaluated the possibility of detecting 46 clinical prokaryotic targets in the human gut, 28 of which could be identified with high precision and sensitivity by a bioinformatics pipeline that includes sequence analysis and taxonomic annotation. These targets included 20 commensal, 3 beneficial (probiotic), and 5 pathogenic intestinal microbial taxa. Using stool microbiome samples from a cohort of 897 healthy individuals, we established a reference range defining clinically relevant relative levels for each of the 28 targets. Our assay quantifies 28 targets in the context of a healthy reference range and correctly reflected 38/38 verification samples of real and synthetic stool material containing known gut pathogens. Thus, we have established a method to determine microbiome composition with a focus on clinically relevant taxa, which has the potential to contribute to patient diagnosis, treatment, and monitoring. More broadly, our method can facilitate epidemiological studies of the microbiome as it relates to overall human health and disease.


Assuntos
Microbioma Gastrointestinal , RNA Ribossômico 16S/genética , Humanos , Valores de Referência , Análise de Sequência de RNA
5.
PLoS One ; 9(5): e97279, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24827833

RESUMO

Experimental efforts to characterize the human microbiota often use bacterial strains that were chosen for historical rather than biological reasons. Here, we report an analysis of 380 whole-genome shotgun samples from 100 subjects from the NIH Human Microbiome Project. By mapping their reads to 1,751 reference genome sequences and analyzing the resulting relative strain abundance in each sample we present metrics and visualizations that can help identify strains of interest for experimentalists. We also show that approximately 14 strains of 10 species account for 80% of the mapped reads from a typical stool sample, indicating that the function of a community may not be irreducibly complex. Some of these strains account for >20% of the sequence reads in a subset of samples but are absent in others, a dichotomy that could underlie biological differences among subjects. These data should serve as an important strain selection resource for the community of researchers who take experimental approaches to studying the human microbiota.


Assuntos
Genoma Bacteriano/genética , Microbiota/genética , Humanos , Metagenoma/genética , Metagenômica/métodos , Filogenia , Prevalência , RNA Ribossômico 16S/genética , Análise de Sequência de DNA/métodos
6.
J Immunol ; 188(4): 1573-7, 2012 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-22262659

RESUMO

IL-23R gene variants have been identified as risk factors for two major inflammatory bowel diseases (IBDs), Crohn's disease and ulcerative colitis, but how they contribute to disease is poorly understood. In this study, we show that the rs10889677 variant in the 3'-untranslated region of the IL-23R gene displays enhanced levels of both mRNA and protein production of IL-23R. This can be attributed to a loss of binding capacity for the microRNAs (miRNAs) Let-7e and Let-7f by the variant allele. Indeed, inhibition and overexpression of these miRNAs influenced the expression of the wild type but not the variant allele. Our data clearly demonstrate a role for miRNA-mediated dysregulation of IL-23R signaling, correlated with a single nucleotide polymorphism in the IL-23R strongly associated with IBD susceptibility. This implies that this mutation, in combination with other genetic risk factors, can lead to disease through sustained IL-23R signaling, contributing to the chronicity of IBD.


Assuntos
Colite Ulcerativa/genética , Doença de Crohn/genética , Interleucina-23/genética , MicroRNAs/genética , Regiões 3' não Traduzidas , Células Cultivadas , Predisposição Genética para Doença , Variação Genética , Genótipo , Humanos , Interleucina-23/biossíntese , Interleucina-23/metabolismo , MicroRNAs/metabolismo , Polimorfismo de Nucleotídeo Único , RNA Mensageiro/biossíntese , RNA Mensageiro/genética
7.
Science ; 333(6040): 348-53, 2011 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-21764749

RESUMO

We present genome engineering technologies that are capable of fundamentally reengineering genomes from the nucleotide to the megabase scale. We used multiplex automated genome engineering (MAGE) to site-specifically replace all 314 TAG stop codons with synonymous TAA codons in parallel across 32 Escherichia coli strains. This approach allowed us to measure individual recombination frequencies, confirm viability for each modification, and identify associated phenotypes. We developed hierarchical conjugative assembly genome engineering (CAGE) to merge these sets of codon modifications into genomes with 80 precise changes, which demonstrate that these synonymous codon substitutions can be combined into higher-order strains without synthetic lethal effects. Our methods treat the chromosome as both an editable and an evolvable template, permitting the exploration of vast genetic landscapes.


Assuntos
Cromossomos Bacterianos/genética , Códon de Terminação , Conjugação Genética , Escherichia coli/genética , Engenharia Genética/métodos , Genoma Bacteriano , Evolução Molecular Direcionada , Escherichia coli/crescimento & desenvolvimento , Escherichia coli/fisiologia , Instabilidade Genômica , Mutagênese Sítio-Dirigida , Mutação , Fenótipo , Recombinação Genética , Moldes Genéticos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...