Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Science ; 369(6508): 1220-1227, 2020 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-32883864

RESUMO

A key step in translational initiation is the recruitment of the 43S preinitiation complex by the cap-binding complex [eukaryotic initiation factor 4F (eIF4F)] at the 5' end of messenger RNA (mRNA) to form the 48S initiation complex (i.e., the 48S). The 48S then scans along the mRNA to locate a start codon. To understand the mechanisms involved, we used cryo-electron microscopy to determine the structure of a reconstituted human 48S The structure reveals insights into early events of translation initiation complex assembly, as well as how eIF4F interacts with subunits of eIF3 near the mRNA exit channel in the 43S The location of eIF4F is consistent with a slotting model of mRNA recruitment and suggests that downstream mRNA is unwound at least in part by being "pulled" through the 40S subunit during scanning.


Assuntos
Fator de Iniciação 3 em Eucariotos/química , Fator de Iniciação 4F em Eucariotos/química , Iniciação Traducional da Cadeia Peptídica , Trifosfato de Adenosina/química , Códon de Iniciação , Microscopia Crioeletrônica , Humanos , Hidrólise , RNA Mensageiro/química
2.
Mol Cell ; 72(3): 469-481.e7, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30293783

RESUMO

Aberrantly slow translation elicits quality control pathways initiated by the ubiquitin ligase ZNF598. How ZNF598 discriminates physiologic from pathologic translation complexes and ubiquitinates stalled ribosomes selectively is unclear. Here, we find that the minimal unit engaged by ZNF598 is the collided di-ribosome, a molecular species that arises when a trailing ribosome encounters a slower leading ribosome. The collided di-ribosome structure reveals an extensive 40S-40S interface in which the ubiquitination targets of ZNF598 reside. The paucity of 60S interactions allows for different ribosome rotation states, explaining why ZNF598 recognition is indifferent to how the leading ribosome has stalled. The use of ribosome collisions as a proxy for stalling allows the degree of tolerable slowdown to be tuned by the initiation rate on that mRNA; hence, the threshold for triggering quality control is substrate specific. These findings illustrate how higher-order ribosome architecture can be exploited by cellular factors to monitor translation status.


Assuntos
Proteínas de Transporte/fisiologia , Biossíntese de Proteínas/fisiologia , Ribossomos/fisiologia , Proteínas de Transporte/metabolismo , Células HEK293 , Humanos , RNA Mensageiro , Ubiquitina , Ubiquitina-Proteína Ligases , Ubiquitinação
3.
Biosci Rep ; 38(5)2018 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-30135143

RESUMO

Coiled-coils are ubiquitous protein-protein interaction motifs found in many eukaryotic proteins. The elongated, flexible and often irregular nature of coiled-coils together with their tendency to form fibrous arrangements in crystals imposes challenges on solving the phase problem by molecular replacement. Here, we report the successful combinatorial use of native and rational engineered disulfide bridges together with sulfur-SAD phasing as a powerful tool to stabilize and solve the structure of coiled-coil domains in a straightforward manner. Our study is a key example of how modern sulfur SAD combined with mutagenesis can help to advance and simplify the structural study of challenging coiled-coil domains by X-ray crystallography.


Assuntos
Motivos de Aminoácidos/genética , Modelos Moleculares , Domínios e Motivos de Interação entre Proteínas/genética , Proteínas/química , Cristalografia por Raios X , Dissulfetos/química , Conformação Proteica , Engenharia de Proteínas , Proteínas/genética
4.
Proc Natl Acad Sci U S A ; 113(37): 10346-51, 2016 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-27573845

RESUMO

The ability to design and construct structures with atomic level precision is one of the key goals of nanotechnology. Proteins offer an attractive target for atomic design because they can be synthesized chemically or biologically and can self-assemble. However, the generalized protein folding and design problem is unsolved. One approach to simplifying the problem is to use a repetitive protein as a scaffold. Repeat proteins are intrinsically modular, and their folding and structures are better understood than large globular domains. Here, we have developed a class of synthetic repeat proteins based on the pentapeptide repeat family of beta-solenoid proteins. We have constructed length variants of the basic scaffold and computationally designed de novo loops projecting from the scaffold core. The experimentally solved 3.56-Å resolution crystal structure of one designed loop matches closely the designed hairpin structure, showing the computational design of a backbone extension onto a synthetic protein core without the use of backbone fragments from known structures. Two other loop designs were not clearly resolved in the crystal structures, and one loop appeared to be in an incorrect conformation. We have also shown that the repeat unit can accommodate whole-domain insertions by inserting a domain into one of the designed loops.


Assuntos
Peptídeos/química , Conformação Proteica , Proteínas/química , Sequências Repetitivas de Aminoácidos/genética , Sequência de Aminoácidos/genética , Cristalografia por Raios X , Peptídeos/genética , Engenharia de Proteínas , Dobramento de Proteína , Estrutura Secundária de Proteína , Proteínas/genética
5.
Structure ; 24(8): 1358-1371, 2016 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-27477386

RESUMO

Centrioles are microtubule-based structures that play important roles notably in cell division and cilium biogenesis. CEP135/Bld10p family members are evolutionarily conserved microtubule-binding proteins important for centriole formation. Here, we analyzed in detail the microtubule-binding activity of human CEP135 (HsCEP135). X-ray crystallography and small-angle X-ray scattering in combination with molecular modeling revealed that the 158 N-terminal residues of HsCEP135 (HsCEP135-N) form a parallel two-stranded coiled-coil structure. Biochemical, cryo-electron, and fluorescence microscopy analyses revealed that in vitro HsCEP135-N interacts with tubulin, protofilaments, and microtubules and induces the formation of microtubule bundles. We further identified a 13 amino acid segment spanning residues 96-108, which represents a major microtubule-binding site in HsCEP135-N. Within this segment, we identified a cluster of three lysine residues that contribute to the microtubule bundling activity of HsCEP135-N. Our results provide the first structural information on CEP135/Bld10p proteins and offer insights into their microtubule-binding mechanism.


Assuntos
Proteínas de Transporte/química , Microtúbulos/metabolismo , Motivos de Aminoácidos , Sítios de Ligação , Proteínas de Transporte/metabolismo , Humanos , Ligação Proteica , Tubulina (Proteína)/metabolismo
6.
Sci Rep ; 6: 30668, 2016 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-27485312

RESUMO

Tight regulation of kinesin activity is crucial and malfunction is linked to neurological diseases. Point mutations in the KIF21A gene cause congenital fibrosis of the extraocular muscles type 1 (CFEOM1) by disrupting the autoinhibitory interaction between the motor domain and a regulatory region in the stalk. However, the molecular mechanism underlying the misregulation of KIF21A activity in CFEOM1 is not understood. Here, we show that the KIF21A regulatory domain containing all disease-associated substitutions in the stalk forms an intramolecular antiparallel coiled coil that inhibits the kinesin. CFEOM1 mutations lead to KIF21A hyperactivation by affecting either the structural integrity of the antiparallel coiled coil or the autoinhibitory binding interface, thereby reducing its affinity for the motor domain. Interaction of the KIF21A regulatory domain with the KIF21B motor domain and sequence similarities to KIF7 and KIF27 strongly suggest a conservation of this regulatory mechanism in other kinesin-4 family members.


Assuntos
Oftalmopatias Hereditárias/genética , Fibrose/genética , Cinesinas/antagonistas & inibidores , Cinesinas/genética , Transtornos da Motilidade Ocular/genética , Domínios Proteicos/genética , Animais , Células COS , Linhagem Celular , Chlorocebus aethiops , Cristalografia por Raios X , Células HEK293 , Humanos , Cinesinas/metabolismo , Simulação de Acoplamento Molecular , Mutação/genética , Ligação Proteica/genética , Dobramento de Proteína
7.
J Biol Chem ; 291(35): 18496-504, 2016 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-27402853

RESUMO

Dysfunction of cilia is associated with common genetic disorders termed ciliopathies. Knowledge on the interaction networks of ciliary proteins is therefore key for understanding the processes that are underlying these severe diseases and the mechanisms of ciliogenesis in general. Cep104 has recently been identified as a key player in the regulation of cilia formation. Using a combination of sequence analysis, biophysics, and x-ray crystallography, we obtained new insights into the domain architecture and interaction network of the Cep104 protein. We solved the crystal structure of the tumor overexpressed gene (TOG) domain, identified Cep104 as a novel tubulin-binding protein, and biophysically characterized the interaction of Cep104 with CP110, Cep97, end-binding (EB) protein, and tubulin. Our results represent a solid platform for the further investigation of the microtubule-EB-Cep104-tubulin-CP110-Cep97 network of proteins. Ultimately, such studies should be of importance for understanding the process of cilia formation and the mechanisms underlying different ciliopathies.


Assuntos
Proteínas Associadas aos Microtúbulos/química , Centríolos/química , Centríolos/genética , Centríolos/metabolismo , Cílios/química , Cílios/metabolismo , Ciliopatias/genética , Ciliopatias/metabolismo , Cristalografia por Raios X , Humanos , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Domínios Proteicos
9.
Nat Cell Biol ; 18(4): 393-403, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26999736

RESUMO

Centrioles are critical for the formation of centrosomes, cilia and flagella in eukaryotes. They are thought to assemble around a nine-fold symmetric cartwheel structure established by SAS-6 proteins. Here, we have engineered Chlamydomonas reinhardtii SAS-6-based oligomers with symmetries ranging from five- to ten-fold. Expression of a SAS-6 mutant that forms six-fold symmetric cartwheel structures in vitro resulted in cartwheels and centrioles with eight- or nine-fold symmetries in vivo. In combination with Bld10 mutants that weaken cartwheel-microtubule interactions, this SAS-6 mutant produced six- to eight-fold symmetric cartwheels. Concurrently, the microtubule wall maintained eight- and nine-fold symmetries. Expressing SAS-6 with analogous mutations in human cells resulted in nine-fold symmetric centrioles that exhibited impaired length and organization. Together, our data suggest that the self-assembly properties of SAS-6 instruct cartwheel symmetry, and lead us to propose a model in which the cartwheel and the microtubule wall assemble in an interdependent manner to establish the native architecture of centrioles.


Assuntos
Proteínas de Algas/metabolismo , Centríolos/metabolismo , Chlamydomonas reinhardtii/metabolismo , Microtúbulos/metabolismo , Proteínas de Algas/química , Proteínas de Algas/genética , Western Blotting , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Centríolos/química , Centríolos/ultraestrutura , Chlamydomonas reinhardtii/genética , Cristalografia por Raios X , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Humanos , Microscopia de Força Atômica , Microscopia Eletrônica , Microscopia de Fluorescência , Microtúbulos/química , Microtúbulos/ultraestrutura , Modelos Moleculares , Conformação Molecular , Mutação , Multimerização Proteica , Estrutura Terciária de Proteína , Interferência de RNA
10.
Nat Commun ; 5: 4217, 2014 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-24969970

RESUMO

The small ubiquitin-like modifier (SUMO) can form polymeric chains that are important signals in cellular processes such as meiosis, genome maintenance and stress response. The SUMO-targeted ubiquitin ligase RNF4 engages with SUMO chains on linked substrates and catalyses their ubiquitination, which targets substrates for proteasomal degradation. Here we use a segmental labelling approach combined with solution nuclear magnetic resonance (NMR) spectroscopy and biochemical characterization to reveal how RNF4 manipulates the conformation of the SUMO chain, thereby facilitating optimal delivery of the distal SUMO domain for ubiquitin transfer.


Assuntos
Proteínas Nucleares/metabolismo , Mapeamento de Interação de Proteínas , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/metabolismo , Fatores de Transcrição/metabolismo , Ubiquitinação/fisiologia , Motivos de Aminoácidos , Humanos , Complexo de Endopeptidases do Proteassoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...