Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 8109, 2024 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-38582757

RESUMO

Bone resorption is highly dependent on the dynamic rearrangement of the osteoclast actin cytoskeleton to allow formation of actin rings and a functional ruffled border. Hem1 is a hematopoietic-specific subunit of the WAVE-complex which regulates actin polymerization and is crucial for lamellipodia formation in hematopoietic cell types. However, its role in osteoclast differentiation and function is still unknown. Here, we show that although the absence of Hem1 promotes osteoclastogenesis, the ability of Hem1-/- osteoclasts to degrade bone was severely impaired. Global as well as osteoclast-specific deletion of Hem1 in vivo revealed increased femoral trabecular bone mass despite elevated numbers of osteoclasts in vivo. We found that the resorption defect derived from the morphological distortion of the actin-rich sealing zone and ruffled border deformation in Hem1-deficient osteoclasts leading to impaired vesicle transport and increased intracellular acidification. Collectively, our data identify Hem1 as a yet unknown key player in bone remodeling by regulating ruffled border formation and consequently the resorptive capacity of osteoclasts.


Assuntos
Reabsorção Óssea , Osteoclastos , Humanos , Osteoclastos/metabolismo , Actinas/metabolismo , Reabsorção Óssea/metabolismo , Osso e Ossos/metabolismo , Osteogênese
2.
Ann Rheum Dis ; 81(8): 1106-1118, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35418478

RESUMO

OBJECTIVE: The aim of this study was to assess the extent and the mechanism by which activin A contributes to progressive joint destruction in experimental arthritis and which activin A-expressing cell type is important for disease progression. METHODS: Levels of activin A in synovial tissues were evaluated by immunohistochemistry, cell-specific expression and secretion by PCR and ELISA, respectively. Osteoclast (OC) formation was assessed by tartrat-resistant acid phosphatase (TRAP) staining and activity by resorption assay. Quantitative assessment of joint inflammation and bone destruction was performed by histological and micro-CT analysis. Immunoblotting was applied for evaluation of signalling pathways. RESULTS: In this study, we demonstrate that fibroblast-like synoviocytes (FLS) are the main producers of activin A in arthritic joints. Most significantly, we show for the first time that deficiency of activin A in arthritic FLS (ActßAd/d ColVI-Cre) but not in myeloid cells (ActßAd/d LysM-Cre) reduces OC development in vitro, indicating that activin A promotes osteoclastogenesis in a paracrine manner. Mechanistically, activin A enhanced OC formation and activity by promoting the interaction of activated Smad2 with NFATc1, the key transcription factor of osteoclastogenesis. Consistently, ActßAd/d LysM-Cre hTNFtg mice did not show reduced disease severity, whereas deficiency of activin A in ColVI-Cre-expressing cells such as FLS highly diminished joint destruction reflected by less inflammation and less bone destruction. CONCLUSIONS: The results highly suggest that FLS-derived activin A plays a crucial paracrine role in inflammatory joint destruction and may be a promising target for treating inflammatory disorders associated with OC formation and bone destruction like rheumatoid arthritis.


Assuntos
Ativinas , Artrite Experimental , Sinoviócitos , Ativinas/genética , Animais , Artrite Experimental/patologia , Fibroblastos/metabolismo , Inflamação/patologia , Camundongos , Índice de Gravidade de Doença , Membrana Sinovial/metabolismo , Sinoviócitos/metabolismo
3.
Sci Rep ; 11(1): 14145, 2021 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-34239010

RESUMO

The interactions of fibroblast-like synoviocyte (FLS)-derived pro-inflammatory cytokines/chemokines and immune cells support the recruitment and activation of inflammatory cells in RA. Here, we show for the first time that the classical myokine myostatin (GDF-8) is involved in the recruitment of Th17 cells to inflammatory sites thereby regulating joint inflammation in a mouse model of TNFalpha-mediated chronic arthritis. Mechanistically, myostatin-deficiency leads to decreased levels of the chemokine CCL20 which is associated with less infiltration of Th17 cells into the inflamed joints. In vitro, myostatin alone or in combination with IL-17A enhances the secretion of CCL20 by FLS whereas myostatin-deficiency reduces CCL20 secretion, associated with an altered transmigration of Th17 cells. Thus, the communication between activated FLS and Th17 cells through myostatin and IL-17A may likely contribute to a vicious cycle of inflammation, accounting for the persistence of joint inflammation in chronic arthritis. Blockade of the CCL20-CCR6 axis by inhibition of myostatin may, therefore, be a promising treatment option for chronic inflammatory diseases such as arthritis.


Assuntos
Artrite Reumatoide/genética , Quimiocina CCL20/genética , Inflamação/genética , Interleucina-17/genética , Miostatina/genética , Receptores CCR6/genética , Animais , Artrite Reumatoide/patologia , Artrite Reumatoide/terapia , Movimento Celular/genética , Modelos Animais de Doenças , Humanos , Inflamação/patologia , Inflamação/terapia , Articulações/metabolismo , Articulações/patologia , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Sinoviócitos/metabolismo , Sinoviócitos/patologia , Células Th17/metabolismo , Células Th17/patologia , Fator de Necrose Tumoral alfa/genética
4.
Thyroid ; 30(6): 908-923, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32183611

RESUMO

Background: Pathological conditions of the thyroid hormone (TH) system are routinely diagnosed by using serum concentrations of thyrotropin (TSH), which is sufficient in most cases. However, in certain conditions, such as resistance to TH due to mutations in THRB (RTHb) or TSH-releasing pituitary adenoma (TSHoma), TSH may be insufficient for a correct diagnosis, even in combination with serum TH concentrations. Likewise, under TH replacement therapy, these parameters can be misleading and do not always allow optimal treatment. Hence, additional biomarkers to assess challenging clinical conditions would be highly beneficial. Methods: Data from untargeted multi-omics analyses of plasma samples from experimental thyrotoxicosis in human and mouse were exploited to identify proteins that might represent possible biomarkers of TH function. Subsequent mouse studies were used to identify the tissue of origin and the involvement of the two different TH receptors (TR). For in-depth characterization of the underlying cellular mechanisms, primary mouse cells were used. Results: The analysis of the plasma proteome data sets revealed 16 plasma proteins that were concordantly differentially abundant under thyroxine treatment compared with euthyroid controls across the two species. These originated predominantly from liver, spleen, and bone. Independent studies in a clinical cohort and different mouse models identified CD5L as the most robust putative biomarker under different serum TH states and treatment periods. In vitro studies revealed that CD5L originates from proinflammatory M1 macrophages, which are similar to liver-residing Kupffer cells, and is regulated by an indirect mechanism requiring the secretion of a yet unknown factor from hepatocytes. In agreement with the role of TRα1 in immune cells and the TRß-dependent hepatocyte-derived signaling, the in vivo regulation of Cd5l expression depended on both TR isoforms. Conclusion: Our results identify several novel targets of TH action in serum, with CD5L as the most robust marker. Although further studies will be needed to validate the specificity of these targets, CD5L seems to be a promising candidate to assess TH action in hepatocyte-macrophage crosstalk.


Assuntos
Proteínas Reguladoras de Apoptose/sangue , Fígado/metabolismo , Receptores Depuradores/sangue , Glândula Tireoide/metabolismo , Receptores beta dos Hormônios Tireóideos/metabolismo , Animais , Biomarcadores/sangue , Macrófagos/metabolismo , Camundongos , Proteômica , Doenças da Glândula Tireoide/genética , Doenças da Glândula Tireoide/metabolismo , Testes de Função Tireóidea , Receptores beta dos Hormônios Tireóideos/genética , Hormônios Tireóideos/sangue
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...