Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Lett ; 30(12): 1536-8, 2005 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-16007799

RESUMO

We report on nearly quantum-limited timing-jitter performance of two passively mode-locked Er:Yb:glass lasers with a repetition rate of 10 GHz. The relative timing jitter of both lasers was measured to be 190 fs (100 Hz-1.56 MHz) root mean square. The remaining cavity-length fluctuations are below 7.5 pm in the 6 Hz-8 kHz frequency range, indicating the stability of a rugged miniature cavity setup. By actively controlling the cavity length we reduced the timing jitter to 26 fs (6 Hz-1.56 MHz). We also discuss the influence of cavity length on the practically achievable timing jitter.

2.
Opt Lett ; 30(3): 263-5, 2005 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-15751879

RESUMO

We report on a simple diode-pumped passively mode-locked Er:Yb:glass laser generating transform-limited 1536-nm solitons of 255-fs duration with a repetition rate of 50 MHz and average power of 58 mW. We also discuss timing jitter and the trade-off between short pulses and high output power in these lasers.

3.
Opt Lett ; 30(1): 44-6, 2005 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-15648632

RESUMO

We demonstrate what is to our knowledge the first mode-locked Nd:YVO4 laser operating on the 4F3/2-4I9/2 transition at 914 nm. Using a semiconductor saturable-absorber mirror for passive mode locking, we have obtained 3-ps pulses at a repetition rate of 233.8 MHz. The laser is based on a standard delta cavity and is pumped by a Ti:sapphire laser. We obtained an average output power of 42 mW through one mirror and an accumulated output power of approximately 150 mW (through all cavity mirrors) at a pump power of 1.4 W.

4.
Opt Lett ; 29(22): 2629-31, 2004 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-15552667

RESUMO

We demonstrate a compact, diode-pumped Nd:GdVO4 laser with a repetition rate of 9.66 GHz and 0.5-W average output power. The laser is passively mode locked with a semiconductor saturable absorber mirror (SESAM), yielding 12-ps-long sech2-shaped pulses. For synchronization of the pulse train to an external reference clock, the SESAM is mounted on a piezoelectric transducer. With an electronic feedback loop of only a few kilohertz loop bandwidth we achieved a rms timing jitter of 146 fs (integrated from 10 Hz to 10 MHz). This is an upper limit because it is mostly limited by the measurement system. The laser setup with a simple linear cavity has a footprint of only 130 mm x 30 mm.

5.
Opt Lett ; 27(19): 1714-6, 2002 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-18033345

RESUMO

We demonstrate a synchronously pumped optical parametric oscillator that emits picosecond pulses at an ~1.55-mum wavelength with a repetition rate as a high as 10 GHz and as much as 100 mW of average power. It is pumped with a diode-pumped passively mode-locked 10-GHz Nd:YVO(4) laser. Because of its high repetition rate and its potential for ultrabroad tunability, this kind of system is useful for telecom applications. It should be scalable to 40 GHz and higher as required for future telecom networks.

6.
Opt Lett ; 25(15): 1119-21, 2000 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-18064290

RESUMO

We demonstrate what is to our knowledge the first mode-locked Yb:KGd(WO(4))(2) laser. Using a semiconductor saturable-absorber mirror for passive mode locking, we obtain pulses of 176-fs duration with an average power of 1.1 W and a peak power of 64 kW at a center wavelength of 1037 nm. We achieve pulses as short as 112 fs at a lower output power. The laser is based on a standard delta cavity and pumped by two high-brightness laser diodes, making the whole system very simple and compact. Tuning the laser by means of a knife-edge results in mode-locked pulses within a wavelength range from 1032 to 1054 nm. In cw operation, we achieve output powers as high as 1.3 W.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...