Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Med Chem ; 67(4): 2907-2940, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38348661

RESUMO

The matrix metalloprotease ADAMTS7 has been identified by multiple genome-wide association studies as being involved in the development of coronary artery disease. Subsequent research revealed the proteolytic function of the enzyme to be relevant for atherogenesis and restenosis after vessel injury. Based on a publicly known dual ADAMTS4/ADAMTS5 inhibitor, we have in silico designed an ADAMTS7 inhibitor of the catalytic domain, which served as a starting point for an optimization campaign. Initially our inhibitors suffered from low selectivity vs MMP12. An X-ray cocrystal structure inspired us to exploit amino acid differences in the binding site of MMP12 and ADAMTS7 to improve selectivity. Further optimization composed of employing 5-membered heteroaromatic groups as hydantoin substituents to become more potent on ADAMTS7. Finally, fine-tuning of DMPK properties yielded BAY-9835, the first orally bioavailable ADAMTS7 inhibitor. Further optimization to improve selectivity vs ADAMTS12 seems possible, and a respective starting point could be identified.


Assuntos
Aterosclerose , Doença da Artéria Coronariana , Humanos , Proteína ADAMTS7/genética , Proteína ADAMTS7/metabolismo , Estudo de Associação Genômica Ampla , Metaloproteinase 12 da Matriz
2.
Org Lett ; 24(50): 9290-9295, 2022 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-36512372

RESUMO

The rhodium(II)-catalyzed reaction of a model alkenyl donor/acceptor N-sulfonyltriazole with a wide selection of furans is reported. This investigation unearthed a range of structurally diverse carbocyclic and ring-opened products, in good to excellent yields. The products obtained are proposed to arise selectively via cyclopropanation or zwitterionic rearrangement pathways, which are highly dependent on both the structural and electronic features of the furan substrate.


Assuntos
Ródio , Ródio/química , Triazóis , Reação de Cicloadição , Catálise , Furanos/química
3.
Chemistry ; 26(59): 13372-13377, 2020 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-32991008

RESUMO

The tigliane ring system, which encompasses iconic members such as phorbol and TPA, is widely renowned due to numerous observations of displaying potent biological activity, and subsequent use as mainstream biochemical tools. Traditionally, naturally occurring phorboids are regarded as tumor promotors through PKC activation, although in recent times more highly oxidized natural derivatives have been identified as anti-tumor agents. In the view that only limited synthetic investigations toward skeletal stereochemical modification have been undertaken, non-natural systems could be useful for a better understanding of the tigliane pharmacophore via interrogation of cellular sensitivity. In this context the concise construction of a number of highly functionalized non-natural D-ring inverted phorbol esters were synthesized, via a rhodium-catalyzed [4+3] cycloaddition, and biologically evaluated using a range of cancer cell lines. The biological results highlight the notion that subtle changes in structure have dramatic effects on potency. Furthermore, although the non-natural derivatives did not outcompete the natural systems in the PKC-activation sensitive MCF7 cancer cell line, they outperformed in other cancer cell lines (MM96L and CAL27). This observation strongly suggested an alternate mode of action not involving activation of PKC, but instead involves thiol addition as indicated by glutathione addition and NF-κB reporter activity.


Assuntos
Neoplasias , Forbóis , Proteína Quinase C/química , Compostos de Sulfidrila/química , Linhagem Celular , Humanos
4.
Org Lett ; 21(21): 8761-8764, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31626552

RESUMO

Phorbol esters are long regarded as tumor promotors, due to protein kinase C (PKC) activation, but more recently higher oxidized natural derivatives have been shown to display antitumor activity. Given the synthetic difficulty, systematic non-natural systems are not readily available to further interrogate PKC binding. Herein reported is the concise construction of a considerably advanced intermediate toward D-ring inverted phorbol esters, enabled by a rhodium-catalyzed [4 + 3] cycloaddition involving a highly functionalized tetrahydrobenzofuran.

5.
ACS Chem Biol ; 13(10): 2868-2879, 2018 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-30184433

RESUMO

The poly(ADP-ribose) polymerase (PARP) family of enzymes plays a crucial role in cellular and molecular processes including DNA damage detection and repair and transcription; indeed, PARP inhibitors are under clinical evaluation as chemotherapeutic adjuncts given their capacity to impede genomic DNA repair in tumor cells. Conversely, overactivation of PARP can lead to NAD+ depletion, mitochondrial energy failure, and cell death. Since PARP activation facilitates genomic but impedes mitochondrial DNA repair, nonselective PARP inhibitors are likely to have opposing effects in these cellular compartments. Herein, we describe the synthesis and evaluation of the mitochondria-targeting PARP inhibitor, XJB-veliparib. Attachment of the hemigramicidin S pentapeptide isostere for mitochondrial targeting using a flexible linker at the primary amide site of veliparib did not disrupt PARP affinity or inhibition. XJB-veliparib was effective at low nanomolar concentrations (10-100 nM) and more potent than veliparib in protection from oxygen-glucose deprivation (OGD) in primary cortical neurons. Both XJB-veliparib and veliparib (10 nM) preserved mitochondrial NAD+ after OGD; however, only XJB-veliparib prevented release of NAD+ into cytosol. XJB-veliparib (10 nM) appeared to inhibit poly(ADP-ribose) polymer formation in mitochondria and preserve mitochondrial cytoarchitecture after OGD in primary cortical neurons. After 10 nM exposure, XJB-veliparib was detected by LC-MS in mitochondria but not nuclear-enriched fractions in neurons and was observed in mitoplasts stripped of the outer mitochondrial membrane obtained from HT22 cells. XJB-veliparib was also effective at preventing glutamate-induced HT22 cell death at micromolar concentrations. Importantly, in HT22 cells exposed to H2O2 to produce DNA damage, XJB-veliparib (10 µM) had no effect on nuclear DNA repair, in contrast to veliparib (10 µM) where DNA repair was retarded. XJB-veliparib and analogous mitochondria-targeting PARP inhibitors warrant further evaluation in vitro and in vivo, particularly in conditions where PARP overactivation leads to mitochondrial energy failure and maintenance of genomic DNA integrity is desirable, e.g., ischemia, oxidative stress, and radiation exposure.


Assuntos
Benzimidazóis/farmacologia , Mitocôndrias/metabolismo , Fármacos Neuroprotetores/farmacologia , Oligopeptídeos/farmacologia , Poli(ADP-Ribose) Polimerase-1/antagonistas & inibidores , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Animais , Benzimidazóis/síntese química , Benzimidazóis/toxicidade , Morte Celular/efeitos dos fármacos , Linhagem Celular , Reparo do DNA/efeitos dos fármacos , Camundongos , NAD/metabolismo , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/síntese química , Fármacos Neuroprotetores/toxicidade , Oligopeptídeos/síntese química , Oligopeptídeos/toxicidade , Inibidores de Poli(ADP-Ribose) Polimerases/síntese química , Inibidores de Poli(ADP-Ribose) Polimerases/toxicidade , Ratos Sprague-Dawley
6.
In Vivo ; 31(1): 39-43, 2017 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-28064218

RESUMO

BACKGROUND/AIM: Mitochondrial-targeted gramicidin S (GS)-nitroxide, JP4-039, has been demonstrated to be a potent radiation mitigator, and safe over a wide dose range. In addition, JP4-039 has organ-specific effectiveness when locally applied. MATERIALS AND METHODS: We tested the effect of another GS-nitroxide, XJB-5-131, which has more effective mitochondrial localization, and compared these results to those for radiation mitigation against the hematopoietic syndrome, and two analogs of JP4-039, which have the same mitochondrial localization signal, but different chemical payloads: JRS527.084 contains a second nitroxide per molecule, and TK649.030 contains an ester group attached to the nitroxide. RESULTS: The results demonstrate the superiority of JP4-039 as a systemic radiation mitigator. CONCLUSION: Structure-activity relationships and bioassays demonstrate that JP4-039 is an optimized small-molecule radiation mitigator.


Assuntos
Óxidos de Nitrogênio/farmacologia , Lesões Experimentais por Radiação/prevenção & controle , Protetores contra Radiação/farmacologia , Irradiação Corporal Total/efeitos adversos , Animais , Relação Dose-Resposta à Radiação , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Estrutura Molecular , Lesões Experimentais por Radiação/etiologia , Protetores contra Radiação/administração & dosagem , Relação Estrutura-Atividade
7.
ACS Cent Sci ; 2(9): 653-659, 2016 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-27725964

RESUMO

Discovering compounds and mechanisms for inhibiting ferroptosis, a form of regulated, nonapoptotic cell death, has been of great interest in recent years. In this study, we demonstrate the ability of XJB-5-131, JP4-039, and other nitroxide-based lipid peroxidation mitigators to prevent ferroptotic cell death in HT-1080, BJeLR, and panc-1 cells. Several analogues of the reactive oxygen species (ROS) scavengers XJB-5-131 and JP4-039 were synthesized to probe structure-activity relationships and the influence of subcellular localization on the potency of these novel ferroptosis suppressors. Their biological activity correlated well over several orders of magnitude with their structure, relative lipophilicity, and respective enrichment in mitochondria, revealing a critical role of intramitochondrial lipid peroxidation in ferroptosis. These results also suggest that preventing mitochondrial lipid oxidation might offer a viable therapeutic opportunity in ischemia/reperfusion-induced tissue injury, acute kidney injury, and other pathologies that involve ferroptotic cell death pathways.

8.
Oncotarget ; 6(37): 39469-81, 2015 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-26415224

RESUMO

Mitochondrial dysfunction plays a central role in the pathogenesis of sarcopenia associated with a loss of mass and activity of skeletal muscle. In addition to energy deprivation, increased mitochondrial ROS damage proteins and lipids in aged skeletal muscle. Therefore, prevention of mitochondrial ROS is important for potential therapeutic strategies to delay sarcopenia. This study elucidates the pharmacological efficiency of the new developed mitochondria-targeted ROS and electron scavenger, XJB-5-131 (XJB) to restore muscle contractility and mitochondrial function in aged skeletal muscle. Male adult (5-month old) and aged (29-month old) Fischer Brown Norway (F344/BN) rats were treated with XJB for four weeks and contractile properties of single skeletal muscle fibres and activity of mitochondrial ETC complexes were determined at the end of the treatment period. XJB-treated old rats showed higher muscle contractility associated with prevention of protein oxidation in both muscle homogenate and mitochondria compared with untreated counterparts. XJB-treated animals demonstrated a high activity of the respiratory complexes I, III, and IV with no changes in citrate synthase activity. These data demonstrate that mitochondrial ROS play a causal role in muscle weakness, and that a ROS scavenger specifically targeted to mitochondria can reverse age-related alterations of mitochondrial function and improve contractile properties in skeletal muscle.


Assuntos
Óxidos N-Cíclicos/farmacologia , Mitocôndrias Musculares/efeitos dos fármacos , Contração Muscular/efeitos dos fármacos , Músculo Esquelético/efeitos dos fármacos , Fatores Etários , Envelhecimento/metabolismo , Envelhecimento/fisiologia , Animais , Citrato (si)-Sintase/metabolismo , Transporte de Elétrons/efeitos dos fármacos , Complexo I de Transporte de Elétrons/metabolismo , Complexo III da Cadeia de Transporte de Elétrons/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Immunoblotting , Masculino , Mitocôndrias Musculares/metabolismo , Fibras Musculares Esqueléticas/efeitos dos fármacos , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/fisiologia , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiologia , Ratos Endogâmicos F344 , Espécies Reativas de Oxigênio/antagonistas & inibidores , Espécies Reativas de Oxigênio/metabolismo , Superóxido Dismutase/metabolismo
9.
Acc Chem Res ; 48(4): 1149-58, 2015 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-25775119

RESUMO

Mechanistically as well as synthetically, bicyclo[1.1.0]butanes represent one of the most fascinating classes of organic compounds. They offer a unique blend of compact size (four carbon atoms), high reactivity (strain energy of 66 kcal/mol), and mechanistic pathway diversity that can be harvested for the rapid assembly of complex scaffolds. The C(1)-C(3) bond combines the electronic features of both σ and π bonds with facile homolytic and heterolytic bond dissociation properties and thereby readily engages pericyclic, transition-metal-mediated, nucleophilic, and electrophilic pathways as well as radical acceptor and donor substrates. Despite this multifaceted reaction profile and recent advances in the preparation of bicylo[1.1.0]butanes, the current portfolio of synthetic applications is still limited compared with those of cyclopropanes and cyclobutanes. In this Account, we describe our work over the past decade on the exploration of substituent effects on the ring strain and the reactivity of bicyclo[1.1.0]butanes, particularly in the context of metal-mediated processes. We first describe Rh(I)-catalyzed cycloisomerization reactions of N-allyl amines to give pyrrolidine and azepine heterocycles. The regioselectivity of the C,C-bond insertion/ring-opening step in these reactions is controlled by the phosphine ligand. After metal carbene formation, an intramolecular cyclopropanation adds a second fused ring system. A proposed mechanism rationalizes why rhodium(I) complexes with monodentate ligands favor five-membered heterocycles, as opposed to Rh(I)-bidentate ligand catalysts, which rearrange N-allyl amines to seven-membered heterocycles. The scope of Rh(I)-catalyzed cycloisomerization reactions was extended to allyl ethers, which provide a mixture of five- and seven-membered cyclic ethers regardless of the nature of the phosphine additive and Rh(I) precatalyst. The chemical diversity of these cycloisomerization products was further expanded by a consecutive one-pot metathesis reaction. Rh(I)-catalyzed cycloisomerizations of propargyl amides, ethers, and electron-deficient bicyclo[1.1.0]butanes diverged mechanistically and often led to a significant number of decomposition products. In these cases, Pt(II) emerged as a superior, more alkynophilic late transition metal with its own mechanistic peculiarities. While monosubstituted bicyclo[1.1.0]butanes led to the formation of tetrahydropyridines, 1,3-disubstituted and electron-deficient bicyclo[1.1.0]butanes reacted distinctly differently with Pt(II) and ultimately provided a complementary set of nitrogen- and oxygen-containing cyclic scaffolds. The metal-catalyzed ring transformations of bicyclo[1.1.0]butanes presented herein suggest additional strategies for new reaction discoveries that can access a wide variety of novel cyclic frameworks from relatively simple starting materials. In addition, these case studies highlight the considerable potential for future applications in natural products, medicinal, and diversity-oriented synthesis based on the wealth of mechanistic pathways available to these strained small-ring carbocycles.


Assuntos
Compostos Bicíclicos com Pontes/química , Butanos/química , Compostos Heterocíclicos/síntese química , Cristalografia por Raios X , Compostos Heterocíclicos/química , Modelos Moleculares , Conformação Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...