Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Funct Biomater ; 15(2)2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38391882

RESUMO

Various surface modification strategies are being developed to endow dental titanium implant surfaces with micro- and nano-structures to improve their biocompatibility, and first of all their osseointegration. These modifications have the potential to address clinical concerns by stimulating different biological processes. This study aims to evaluate the biological responses of ananatase-modified blasted/etched titanium (SLA-anatase) surfaces compared to blasted/acid etched (SLA) and machined titanium surfaces. Using unipolar pulsed direct current (DC) sputtering, a nanocrystalline anatase layer was fabricated. In vitro experiments have shown that SLA-anatase discs can effectively promote osteoblast adhesion and proliferation, which are regarded as important features of a successful dental implant with bone contact. Furthermore, anatase surface modification has been shown to partially enhance osteoblast mineralization in vitro, while not significantly affecting bacterial colonization. Consequently, the recently created anatase coating holds significant potential as a promising candidate for future advancements in dental implant surface modification for improving the initial stages of osseointegration.

2.
Dent Mater ; 40(4): 674-688, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38388252

RESUMO

OBJECTIVE: Polyetheretherketone (PEEK), a biomaterial with appropriate bone-like mechanical properties and excellent biocompatibility, is widely applied in cranio-maxillofacial and dental applications. However, the lack of antibacterial effect is an essential drawback of PEEK material and might lead to infection and osseointegration issues. This study aims to apply a natural antibacterial agent, totarol coating onto the 3D printed PEEK surface and find an optimized concentration with balanced cytocompatibility, osteogenesis, and antibacterial capability. METHODS: In this study, a natural antibacterial agent, totarol, was applied as a coating to fused filament fabrication (FFF) 3D printed PEEK surfaces at a series of increasing concentrations (1 mg/ml, 5 mg/ml, 10 mg/ml, 15 mg/ml, and 20 mg/ml). The samples were then evaluated for cytocompatibility with L929 fibroblast and SAOS-2 osteoblast using live/dead staining and CCK-8 assay. The antibacterial capability was assessed by crystal violet staining, live/dead staining, and scanning electron microscopy (SEM) utilizing the oral primary colonizer S. gordonii and isolates of mixed oral bacteria in a stirring system simulating the oral environment. The appropriate safe working concentration for totarol coating is selected based on the results of the cytocompatibility and antibacterial test. Subsequently, the influence on osteogenic differentiation was evaluated by alkaline phosphatase (ALP) and alizarin red staining (ARS) analysis of pre-osteoblasts. RESULTS: Our results showed that the optimal concentration of totarol solution for promising antibacterial coating was approximately 10 mg/ml. Such surfaces could play an excellent antibacterial role by inducing a contact-killing effect with an inhibitory effect against biofilm development without affecting the healing of soft and hard tissues around FFF 3D printed PEEK implants or abutments. SIGNIFICANCE: This study indicates that the totarol coated PEEK has an improved antibacterial effect with excellent biocompatibility providing great clinical potential as an orthopedic/dental implant/abutment material.


Assuntos
Abietanos , Benzofenonas , Implantes Dentários , Osteogênese , Polímeros , Polietilenoglicóis/farmacologia , Polietilenoglicóis/química , Cetonas/farmacologia , Cetonas/química , Antibacterianos/farmacologia , Antibacterianos/química , Impressão Tridimensional , Propriedades de Superfície
3.
Materials (Basel) ; 16(23)2023 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-38068051

RESUMO

The micro- and nanostructures, chemical composition, and wettability of titanium surfaces are essential for dental implants' osseointegration. Combining hydrophilicity and nanostructure has been shown to improve the cell response and to shorten the healing time. This study aimed to investigate the biological response to different wettability levels and nanotopographical modifications in aged and non-aged titanium surfaces. By plasma etching titanium surfaces with the fluorine gas 2,3,3,3-tetrafluoropropene (R1234yF), additional nanostructures were created on the sample surfaces. Furthermore, this treatment resulted in sustained superhydrophilicity and fluoride accumulation. We examined the effect of various nanostructuring processes and aging using scanning electron microscopy, roughness analyses, and wettability measurement. In addition, all the surface modifications were tested for their effects on fibroblast adhesion, proliferation, and viability as well as osteoblast differentiation. Our study indicates that the plasma etching, with 2,3,3,3-tetrafluoropropene, of the machined and SLA surface neither favored nor had an adverse effect on the biological response of the SAOS-2 osteoblast cell line. Although the fluorine-plasma-etched surfaces demonstrated improved fibroblast cell viability, they did not lead to improved early osseointegration. It is still unclear which surface properties mainly influence fibroblast and osteoblast adhesion. Further physiochemical aspects, such as electrostatic interaction and surface tension, are crucial to be analyzed along with wettability and roughness.

4.
Cardiovasc Intervent Radiol ; 45(2): 236-243, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34913987

RESUMO

PURPOSE: Due to thromboembolic complications and in-stent-stenosis after flow diverter (FD) treatment, the long-term use of dual antiplatelet treatment (DAPT) is mandatory. The tested nano-coating has been shown to reduce material thrombogenicity and promote endothelial cell proliferation in vitro. We compared the biocompatibility of coated (Derivo Heal) and non-coated (Derivo bare) FDs with DAPT in an animal model. METHODS: Derivo® bare (n = 10) and Derivo® Heal (n = 10) FD were implanted in the common carotid arteries (CCAs) of New Zealand white rabbits. One additional FD, alternately a Derivo bare (n = 5) or Derivo Heal (n = 5), was implanted in the abdominal aorta (AA) for assessment of the patency of branch arteries. Histopathological examinations were performed after 28 days. Angiography was performed before and after FD implantation and at follow-up. RESULTS: Statistical analysis of the included specimens showed complete endothelialization of all FDs with no significant differences in neointima thickness between Derivo® bare and Derivo® Heal (CCA: p = 0.91; AA: p = 0.59). A significantly reduced number of macrophages in the vessel wall of the Derivo Heal was observed for the CCA (p = 0.02), and significantly reduced fibrin and platelet deposition on the surface of the Derivo Heal was observed for the AA. All branch arteries of the stented aorta remained patent. CONCLUSION: In this animal model, the novel fibrin-based coated FD showed a similar blood and tissue compatibility as the non-coated FD.


Assuntos
Fibrina , Stents , Animais , Plaquetas , Artéria Carótida Primitiva , Materiais Revestidos Biocompatíveis , Neointima , Coelhos
5.
Mater Sci Eng C Mater Biol Appl ; 130: 112430, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34702515

RESUMO

Biodegradable zinc (Zn) and Zn-based alloys have been recognized as promising biomaterials for biomedical implants. Sterilization is an essential step in handling Zn-based implants before their use in clinical practice and there are various sterilization methods are available. However, how these treatments influence the Zn-based biomaterials remains unknown and is of critical relevance. In this study, three commonly-applied standard sterilization methods, namely gamma irradiation, hydrogen peroxide gas plasma and steam autoclave, were used on pure Zn and Zn3Cu (wt%) alloy. The treated Zn and ZnCu alloy were investigated to compare the different influences of sterilizations on surface characteristics, transient and long-term degradation behavior and cytotoxicity of Zn and Zn alloy. Our results indicate that autoclaving brought about apparently a formation of inhomogeneous zinc oxide film whereas the other two methods produced no apparent alterations on the material surfaces. Consequently, the samples after autoclaving showed significantly faster degradation rates and more severe localized corrosion, especially for the ZnCu alloy, owing to the incomplete covering and unstable zinc oxide layer. Moreover, the autoclave-treated Zn and ZnCu alloy exhibited apparent cytotoxic effects towards fibroblasts, which may be due to the excessive Zn ion releasing and its local concentration exceeds the cellular tolerance capacity. In contrast, gamma irradiation and hydrogen peroxide gas plasma had no apparent adverse effects on the biodegradability and cytocompatibility of Zn and ZnCu alloy. Our findings may have significant implications regarding the selection of suitable sterilization methods for Zn-based implant materials among others.


Assuntos
Implantes Absorvíveis , Zinco , Ligas/farmacologia , Materiais Biocompatíveis/farmacologia , Corrosão , Teste de Materiais , Esterilização
6.
Pharmaceutics ; 13(9)2021 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-34575580

RESUMO

Medical devices directly exposed to blood are commonly used to treat cardiovascular diseases. However, these devices are associated with inflammatory reactions leading to delayed healing, rejection of foreign material or device-associated thrombus formation. We developed a novel recombinant fusion protein as a new biocompatible coating strategy for medical devices with direct blood contact. We genetically fused human serum albumin (HSA) with ectonucleoside triphosphate diphosphohydrolase-1 (CD39), a promising anti-thrombotic and anti-inflammatory drug candidate. The HSA-CD39 fusion protein is highly functional in degrading ATP and ADP, major pro-inflammatory reagents and platelet agonists. Their enzymatic properties result in the generation of AMP, which is further degraded by CD73 to adenosine, an anti-inflammatory and anti-platelet reagent. HSA-CD39 is functional after lyophilisation, coating and storage of coated materials for up to 8 weeks. HSA-CD39 coating shows promising and stable functionality even after sterilisation and does not hinder endothelialisation of primary human endothelial cells. It shows a high level of haemocompatibility and diminished blood cell adhesion when coated on nitinol stents or polyvinylchloride tubes. In conclusion, we developed a new recombinant fusion protein combining HSA and CD39, and demonstrated that it has potential to reduce thrombotic and inflammatory complications often associated with medical devices directly exposed to blood.

8.
Mater Sci Eng C Mater Biol Appl ; 122: 111924, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33641917

RESUMO

Zinc (Zn) alloys seem to be promising candidates for application in orthopaedic or cardiovascular medical implants. In this area, high standards are required regarding the biocompatibility as well as excellent mechanical and tailored degradation properties. In the presented study, a novel Zn-0.8Mg-0.2Sr (wt%) alloy has been fabricated by the combination of casting, homogenization annealing and extrusion at 200 °C. As a consequence of its fine-grained homogenous microstructure, the prepared material is characterized by an excellent combination of tensile yield strength, ultimate tensile strength and elongation corresponding to 244 MPa, 324 MPa and 20% respectively. The in vitro corrosion rates of the Zn-0.8Mg-0.2Sr alloy in the physiological solution and the simulated body fluid were 244 µm/a and 69.8 µm/a, respectively. Furthermore, an extract test revealed that Zn-0.8Mg-0.2Sr extracts diluted to 25% had no adverse effects towards L929 fibroblasts, TAg periosteal cells and Saos-2 osteoblasts. Moreover, the Zn-0.8Mg-0.2Sr surface showed effective inhibition of initial Streptococcus gordonii adhesion and biofilm formation. These results indicated the Zn-0.8Mg-0.2Sr alloy, which has superior mechanical properties, might be a promising candidate for materials used for load-bearing applications.


Assuntos
Ligas , Zinco , Implantes Absorvíveis , Materiais Biocompatíveis , Corrosão , Teste de Materiais , Resistência à Tração
9.
J Mater Sci Mater Med ; 31(12): 131, 2020 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-33270156

RESUMO

This study aimed to investigate in vivo two stent technologies, with particular emphasis on thrombogenicity and inflammatory vessel remodeling processes. The micro-stents tested in this study were developed for intracranial aneurysm treatment. In our study twelve, New Zealand white rabbits were divided into two groups: 18 laser-cut stents (LCS) and 18 braided stents (BS) were impanated without admiration of antiplatelet medication. Three stents were implanted into each animal in the common carotid artery, subclavian artery, and abdominal aorta. Digital subtraction angiography was performed before and after stent implantation and at follow-up for the visualization of occurring In-stent thromboembolism or stenosis. The Stents were explanted for histopathological examination at two different timepoints, after 3 and 28 days. Angiographically neither in-stent thrombosis nor stenosis for both groups was seen. There was a progressive increase in the vessel diameter, which was more pronounced for BS than for LCS. We detected a higher number of thrombi adherent to the foreign material on day 3 for BS. On day 3, the neointima was absent, whereas the complete formation observed was on day 28. There was no significant difference between both groups regarding the thickness of the neointima. The in vivo model of our study enabled the evaluation of blood and vessel reactions for two different stent technologies. Differences in vessel dimension and tissue around the stents were observed on day 28. Histological analysis on day 3 enabled the assessment of thrombotic reactions, representing an important complementary result in long-term studies.


Assuntos
Prótese Vascular , Aneurisma Intracraniano/fisiopatologia , Stents Metálicos Autoexpansíveis , Stents , Angiografia , Animais , Aorta/fisiopatologia , Aorta Abdominal , Artéria Carótida Primitiva , Circulação Cerebrovascular , Constrição Patológica , Lasers , Teste de Materiais , Modelos Animais , Neointima , Inibidores da Agregação Plaquetária/farmacologia , Desenho de Prótese , Coelhos , Artéria Subclávia , Trombose
10.
Biomed Mater ; 16(1): 015026, 2020 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-33166946

RESUMO

Flow diversion aims at treatment of intracranial aneurysms via vessel remodeling mechanisms, avoiding the implantation of foreign materials into the aneurysm sack. However, complex implantation procedure, high metal surface and hemodynamic disturbance still pose a risk for thromboembolic complications in the clinical praxis. A novel fibrin and heparin based nano coating considered as a hemocompatible scaffold for neointimal formation was investigated regarding thrombogenicity and endothelialization. The fibrin-heparin coating was compared to a bare metal as well as fibrin- or heparin-coated flow diverters. The implants were tested separately in regard to inflammation and coagulation markers in two different in vitro hemocompatibility models conducted with human whole blood (n = 5). Endothelialization was investigated through a novel dynamic in vitro cell seeding model containing primary human cells with subsequent viability assay. It was demonstrated that platelet loss and platelet activation triggered by presence of a bare metal stent could be significantly reduced by applying the fibrin-heparin, fibrin and heparin coating. Viability of endothelial cells after proliferation was similar in fibrin-heparin compared to bare metal implants, with a slight, non-significant improvement observed in the fibrin-heparin group. The results suggest that the presented nanocoating has the potential to reduce thromboembolic complications in a clinical setting. Though the new model allowed for endothelial cell proliferation under flow conditions, a higher number of samples is required to assess a possible effect of the coating.


Assuntos
Materiais Revestidos Biocompatíveis/química , Stents Farmacológicos , Hemostasia , Aneurisma Intracraniano/cirurgia , Nanoestruturas/química , Adesão Celular , Proliferação de Células , Circulação Cerebrovascular , Fibrina/química , Heparina , Heparina Liase , Células Endoteliais da Veia Umbilical Humana/citologia , Humanos , Técnicas In Vitro , Aneurisma Intracraniano/fisiopatologia , Teste de Materiais , Neointima , Ativação Plaquetária , Alicerces Teciduais/química , Remodelação Vascular
12.
Wound Repair Regen ; 28(4): 573-575, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32281172

RESUMO

Recently, we reported that some wound dressings caused complement activation at the interface of wound dressing and blood. Since complement activation is associated with impaired wound healing, we investigated whether this activation of the complement cascade at the interface of wound dressings and blood does impair reepithelialization in a scratch wound healing assay. Although some samples showed higher levels of the complement activation marker SC5b-9 in our study, reepithelialization of the samples did not significantly differ from the control group. Further studies have to clarify if complement activation at the interface of wound dressings and blood plays a relevant role in the healing process especially in long-time experiments.


Assuntos
Sangue/metabolismo , Proliferação de Células , Ativação do Complemento , Complexo de Ataque à Membrana do Sistema Complemento/metabolismo , Queratinócitos/metabolismo , Reepitelização , Pele Artificial , Bandagens , Movimento Celular , Materiais Revestidos Biocompatíveis , Colágeno , Elastina , Polímeros de Fluorcarboneto , Humanos , Técnicas In Vitro , Vaselina , Poliésteres , Cicatrização , Ferimentos e Lesões
13.
J Vis Exp ; (157)2020 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-32202530

RESUMO

The growing use of medical devices (e.g., vascular grafts, stents, and cardiac catheters) for temporary or permanent purposes that remain in the body's circulatory system demands a reliable and multiparametric approach that evaluates the possible hematologic complications caused by these devices (i.e., activation and destruction of blood components). Comprehensive in vitro hemocompatibility testing of blood-contacting implants is the first step towards successful in vivo implementation. Therefore, extensive analysis according to the International Organization for Standardization 10993-4 (ISO 10993-4) is mandatory prior to clinical application. The presented flow loop describes a sensitive model to analyze the hemostatic performance of stents (in this case, neurovascular) and reveal adverse effects. The use of fresh human whole blood and gentle blood sampling are essential to avoid the preactivation of blood. The blood is perfused through a heparinized tubing containing the test specimen by using a peristaltic pump at a rate of 150 mL/min at 37 °C for 60 min. Before and after perfusion, hematologic markers (i.e., blood cell count, hemoglobin, hematocrit, and plasmatic markers) indicating the activation of leukocytes (polymorphonuclear [PMN]-elastase), platelets (ß-thromboglobulin [ß-TG]), the coagulation system (thombin-antithrombin III [TAT]), and the complement cascade (SC5b-9) are analyzed. In conclusion, we present an essential and reliable model for extensive hemocompatibility testing of stents and other blood-contacting devices prior to clinical application.


Assuntos
Circulação Sanguínea/fisiologia , Prótese Vascular , Teste de Materiais/métodos , Modelos Biológicos , Biomarcadores/metabolismo , Contagem de Células Sanguíneas , Circulação Sanguínea/efeitos dos fármacos , Coleta de Amostras Sanguíneas , Proteínas do Sistema Complemento/metabolismo , Heparina/farmacologia , Humanos , Sistema Imunitário/metabolismo , Elastase Pancreática/metabolismo , Plasma , Stents , beta-Tromboglobulina/metabolismo
14.
Mater Sci Eng C Mater Biol Appl ; 110: 110701, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32204015

RESUMO

Peri-implantitis is the most important issue threatening the long-term survival rate of dental implants. Various efforts have been made to reduce implant surface plaque formation, which is one of the essential causes of peri-implantitis. In our study, we applied the natural antibacterial agent totarol as a coating on experimental silicon wafer and titanium implant surfaces. To analyze the interaction between the totarol coating and the oral primary colonizer S. gordonii and isolates of mixed oral bacteria, samples were incubated in a model system simulating the oral environment and analyzed by Live/Dead staining, crystal violet staining and scanning electron microscopy (SEM). After 4 d, 8 d, 12 d, 16 d, and 24 d salivary incubation, the stability and antibacterial efficiency of totarol coating was evaluated through SEM. The results indicated that totarol coatings on both silicon wafer and Ti surfaces caused efficient contact killing and an inhibition effect towards S. gordonii and mixed oral bacterial film growth after 4 h, 8 h, 24 h, and 48 h incubation. After longtime salivary incubation of 12 d, the bactericidal effect started to weaken, but the anti-adhesion and inhibition effect to biofilm development still exist after 24 d of salivary incubation. The application of a totarol coating on implant or abutment surfaces is a promising potential prophylactic approach against peri-implantitis.


Assuntos
Abietanos/química , Antibacterianos/química , Peri-Implantite/prevenção & controle , Antibacterianos/farmacologia , Biofilmes/efeitos dos fármacos , Materiais Revestidos Biocompatíveis/química , Implantes Dentários/microbiologia , Humanos , Microscopia Eletrônica de Varredura/métodos , Peri-Implantite/microbiologia , Saliva/microbiologia , Streptococcus gordonii/efeitos dos fármacos , Propriedades de Superfície/efeitos dos fármacos , Titânio/química
15.
Biomed Phys Eng Express ; 6(2): 025012, 2020 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-33438638

RESUMO

Polycaprolactone (PCL) was electrospun with the addition of arginine (Arg), an α-amino acid that accelerates the healing process. The efficient needleless electrospinning technique was used for the fabrication of the nanofibrous layers. The materials produced consisted mainly of fibers with diameters of between 200 and 400 nm. Moreover, both microfibers and beads were present within the layers. Higher bead sizes were observed with the increased addition of arginine. The arginine content within the layers as well as the weight of the resultant electrospun materials were enhanced with the increased addition of arginine to the electrospinning solution (1, 5 and 10 wt%). The PCL + 1% Arg nanofibrous layer contained 5.67 ± 0.04% of arginine, the PCL + 5% Arg layer 22.66 ± 0.24% of arginine and the PCL + 10% Arg layer 37.33 ± 0.39% of arginine according to the results of the elemental analysis. A high burst release within 5 h of soaking was recorded for the PCL + 5% and PCL + 10% nanofibrous layers. However, the release rate of arginine from the PCL + 1% Arg was significantly slower, reaching a maximum level after 72 h of soaking. The resulting materials were hydrophobic. Hemocompatibility testing under static conditions revealed no effect on hemolysis following the addition of arginine and the prolongation of the prothrombin time with the increased addition of arginine, thus exerting an influence on the extrinsic and common pathway of coagulation activation. The results of the dynamic hemocompatibility assessment revealed that the numbers of blood cells and platelets were not affected significantly by the various electrospun samples during incubation. The TAT, ß-thromboglobulin and SC5-b9 concentrations were characterized by a moderate increase in the PCL group compared to those of the control group. The presence of arginine resulted in a decrease in the investigated hemocompatibility markers. The PMN elastase levels were comparable with respect to all the groups.


Assuntos
Arginina/química , Hemólise , Teste de Materiais/métodos , Poliésteres/química , Alicerces Teciduais/química , Cicatrização , Materiais Biocompatíveis/química , Eletricidade , Humanos , Nanofibras/química , Tempo de Protrombina , Engenharia Tecidual
16.
Cardiovasc Intervent Radiol ; 42(12): 1786-1794, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31555850

RESUMO

PURPOSE: It has been hypothesized that microstents which are used to prevent coil protrusion in the treatment of cerebral aneurysms may have flow diverting and therefore occlusive effects. In a rabbit elastase aneurysm model, we investigated the aneurysm occlusion rate and vessel reaction of a braided Accero stent prototype with porosity in the lower range of other available (non-flow-diverter) microstents. METHODS: Ten aneurysms were induced the right subclavian artery in New Zealand white rabbits and treated with the Accero stent prototype. In each subject, a second stent was implanted in the abdominal aorta to cover the origins of branch arteries. Angiographic follow-up and explantation of the devices and aneurysms for histological analysis were performed after 3 months (n = 5) and 6 months (n = 5). RESULTS: Grades I (< 50%) and II (> 50%) occlusion rates were observed in 9 (90%) and 1 (10%) of ten aneurysms treated with the stent device. The mean reduction in contrast filling at 6 months was 42.1% (p = .02). Neointima thickness was significantly higher in the subclavian artery than in the abdominal aorta after 3 (p = .03), whereas not after 6 months (p = .1). No cases of inadequate wall apposition, branch artery occlusion or stent thrombosis were observed. CONCLUSION: The present study showed flow remodelling properties of the device prototype with progredient aneurysm occlusion. A larger in vivo study with induced aneurysm should be done to confirm these results.


Assuntos
Aneurisma Aórtico/terapia , Stents , Grau de Desobstrução Vascular/fisiologia , Angiografia , Animais , Aneurisma Aórtico/diagnóstico por imagem , Aneurisma Aórtico/fisiopatologia , Modelos Animais de Doenças , Desenho de Equipamento , Feminino , Coelhos , Artéria Subclávia/diagnóstico por imagem , Resultado do Tratamento
17.
J Biol Eng ; 13: 40, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31168319

RESUMO

The application of synthetic modified messenger RNA (mRNA) is a promising approach for the treatment of a variety of diseases and vaccination. In the past few years, different modifications of synthetic mRNA were applied to render the mRNA more stable and less immunogenic. However, the repeated application of synthetic mRNA still requires the suppression of immune activation to avoid cell death and to allow a sufficient production of exogenous proteins. Thus, the addition of type I interferon (IFN) inhibiting recombinant protein B18R is often required to avoid IFN response. In this study, the ability of B18R encoding mRNA to prevent the immune response of cells to the delivered synthetic mRNA was analyzed. The co-transfection of enhanced green fluorescent protein (eGFP) mRNA transfected fibroblasts with B18R encoding mRNA over 7-days resulted in comparable cell viability and eGFP protein expression as in the cells transfected with eGFP mRNA and incubated with B18R protein. Using qRT-PCR, significantly reduced expression of interferon-stimulated gene Mx1 was detected in the cells transfected with B18R mRNA and stimulated with IFNß compared to the cells without B18R mRNA transfection. Thereby, it was demonstrated that the co-transfection of synthetic mRNA transfected cells with B18R encoding mRNA can reduce the IFN response-related cell death and thus, improve the protein expression.

18.
J Mater Sci Mater Med ; 30(6): 67, 2019 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-31165278

RESUMO

Braiding of Nitinol micro wires is an established technology for the manufacturing of fine-meshed neurovascular implants for tortuous vessel geometries. Electropolishing of wires before the braiding process has the potential to improve the in vitro behaviour in terms of thrombogenicity and endothelial cell proliferation. In this study, we present the first in vitro investigation of braided electropolished/blue oxide Nitinol samples in a blood flow loop, showing a significantly lower activation of the coagulation pathway (represented by the TAT III marker) and a tendency towards reduced platelet adhesion. Furthermore, we applied the same surface treatment on flat disks and measured protein adhesion as well as endothelial cell proliferation. We compared our results to non-electropolished samples with a native oxide surface. While platelet deposition was reduced on electropolished/blue oxide surface, a significant increase of endothelial cell seeding was observed. Investigation of inflammatory marker expression in endothelial cells provided divergent results depending on the marker tested, demanding closer investigation. Surface analysis using Auger electron spectroscopy revealed a thin layer mainly consisting of titanium oxynitride or titanium oxide + titanium nitride as a potential cause of the improved biological performance. Translated to the clinical field of intracranial aneurysm treatment, the improved biocompatibility has the potential to increase both safety (low thrombogenicity) and effectiveness (aneurysm neck reconstruction).


Assuntos
Ligas/química , Coagulação Sanguínea/efeitos dos fármacos , Vasos Sanguíneos/patologia , Materiais Revestidos Biocompatíveis/química , Células Endoteliais/citologia , Adesividade Plaquetária , Próteses e Implantes , Adsorção , Aneurisma/cirurgia , Plaquetas , Adesão Celular , Proliferação de Células , Elasticidade , Eletroquímica , Humanos , Inflamação , Teste de Materiais , Níquel/química , Óxidos/química , Segurança do Paciente , Propriedades de Superfície , Titânio/química
19.
Wound Repair Regen ; 27(5): 470-476, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31145535

RESUMO

A variety of wound dressing are available for burns. Furthermore, although their impacts on wound healing have been studied sufficiently, their effects on blood remain unclear. Meanwhile, this aspect is extremely important, since blood interacts with the wound dressing, especially in extensive burn injuries. Therefore, the aim of this study is to evaluate the hemocompatibility and immunogenicity of different burn wound dressings. Accordingly, human whole blood (n = 5) was anticoagulated with heparin, treated with different wound dressings and incubated at 37°C for 30 minutes. Different parameters for coagulation and hemocompatibility were evaluated before and after incubation. Consequently, Jelonet, Xenoderm, and Matriderm showed higher TAT-III concentrations, Jelonet, Xenoderm, EZ Derm, and Matriderm were higher ß-thromboglobulin; EZ Derm and Burntec showed higher SC5b-9 concentrations after incubation with whole blood. Our ex vivo study provided initial insights into the hemocompatibility and immunogenicity of different burn wound dressings. Moreover, Xenografts (Xenoderm and EZ Derm), Jelonet and Matriderm showed a hemostyptic effect, while EZ Derm and Burntec activated the complement system. Therefore, further studies must be conducted to analyze the possible effects in vivo.


Assuntos
Curativos Biológicos , Queimaduras/patologia , Citocinas/metabolismo , Hemólise/fisiologia , Cicatrização/fisiologia , Animais , Queimaduras/sangue , Queimaduras/imunologia , Ensaio de Imunoadsorção Enzimática , Hemólise/imunologia , Humanos , Suínos , Transplante Heterólogo , Cicatrização/imunologia
20.
J Vis Exp ; (144)2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30774119

RESUMO

The development of messenger RNA (mRNA)-based therapeutics for the treatment of various diseases becomes more and more important because of the positive properties of in vitro transcribed (IVT) mRNA. With the help of IVT mRNA, the de novo synthesis of a desired protein can be induced without changing the physiological state of the target cell. Moreover, protein biosynthesis can be precisely controlled due to the transient effect of IVT mRNA. For the efficient transfection of cells, nanoliposomes (NLps) may represent a safe and efficient delivery vehicle for therapeutic mRNA. This study describes a protocol to generate safe and efficient cationic NLps consisting of DC-cholesterol and 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE) as a delivery vector for IVT mRNA. NLps having a defined size, a homogeneous distribution, and a high complexation capacity, and can be produced using the dry-film method. Moreover, we present different test systems to analyze their complexation and transfection efficacies using synthetic enhanced green fluorescent protein (eGFP) mRNA, as well as their effect on cell viability. Overall, the presented protocol provides an effective and safe approach for mRNA complexation, which may advance and improve the administration of therapeutic mRNA.


Assuntos
Lipossomos/uso terapêutico , Nanomedicina/métodos , Biossíntese de Proteínas/fisiologia , RNA Mensageiro/genética , Humanos , Lipossomos/farmacologia , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...