Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Cent Sci ; 9(6): 1150-1159, 2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37396854

RESUMO

The long-term stability of an active-pharmaceutical ingredient and its drug products plays an important role in the licensing process of new pharmaceuticals and for the application of the drug at the patient. It is, however, difficult to predict degradation profiles at early stages of the development of new drugs, making the entire process very time-consuming and costly. Forced mechanochemical degradation under controlled conditions can be used to realistically model long-term degradation processes naturally occurring in drug products, avoiding the use of solvents, thus excluding irrelevant solution-based degradation pathways. We present the forced mechanochemical oxidative degradation of three platelet inhibitor drug products, where the drug products contain thienopyridine. Model studies using clopidogrel hydrogen sulfate (CLP) and its drug formulation Plavix show that the controlled addition of excipients does not affect the nature of the main degradants. Experiments using drug products Ticlopidin-neuraxpharm and Efient show that significant degradation occurs after short reaction times of only 15 min. These results highlight the potential of mechanochemistry for the study of degradation processes of small molecules relevant to the prediction of degradation profiles during the development of new drugs. Furthermore, these data provide exciting insights into the role of mechanochemistry for chemical synthesis in general.

2.
J Pharm Biomed Anal ; 234: 115506, 2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37311375

RESUMO

Knowledge of the chemical stability of active pharmaceutical ingredients (APIs) is an important issue in the drug development process. This work describes a methodical approach and a comprehensive protocol for forced photodegradation studies of solid clopidogrel hydrogen sulfate (Clp) under artificial sunlight and indoor irradiation at different relative humidities (RHs) and atmospheres. The results showed that, at low RHs (up to 21%), this API was relatively resistant to simulated sunlight as well as indoor light. However, at higher RHs (between 52% and 100%), more degradation products were formed, and the degradation rate increased with rising RH. The influence of oxygen on the degradation was relatively low, and most degradation reactions proceeded even in humid argon atmosphere. The photodegradation products (DP) were analyzed with two different HPLC systems (LC-UV, LC-UV-MS) and selected impurities were separated by a semi-preparative HPLC and identified by high resolution mass spectrometry (ESI-TOF-MS) and 1H NMR techniques. Based on the obtained results, a light induced degradation pathway could be proposed for Clp in solid state.


Assuntos
Luz Solar , Clopidogrel , Fotólise , Umidade , Cromatografia Líquida de Alta Pressão/métodos , Estabilidade de Medicamentos
3.
Molecules ; 26(19)2021 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-34641465

RESUMO

A selective transformation of clopidogrel hydrogen sulfate (CLP) by reactive halogen species (HOX) generated from peroxymonosulfate (PMS) and sodium halide (NaX) is described. Other sustainable oxidants as well as different solvents have also been investigated. As result of this study, for each sodium salt the reaction conditions were optimized, and four different degradation products were formed. Three products were halogenated at C-2 on the thiophene ring and have concomitant functional transformation, such as N-oxide in the piperidine group. A halogenated endo-iminium product was also observed. With this condition, a fast preparation of known endo-iminium clopidogrel impurity (new counterion) was reported as well. The progress of the reaction was monitored using nuclear magnetic resonance spectroscopy as an analytical tool and all the products were characterized by 1D-, 2D-NMR and HRMS.


Assuntos
Clopidogrel/química , Halogenação , Espectroscopia de Ressonância Magnética/métodos , Oxidantes/química , Peróxidos/química , Sódio/química , Oxirredução
4.
Chem Commun (Camb) ; 57(90): 11956-11959, 2021 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-34704567

RESUMO

A method for forced oxidative mechanochemical degradation of active pharmaceutical ingredients (APIs) using clopidogrel hydrogensulfate as a model compound is presented. Considerable and selective formation of degradants occurs already after very short reaction times of less than 15 minutes and the nature of the products is strongly dependent on the used oxidant.


Assuntos
Preparações Farmacêuticas , Oxirredução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...