Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Microbiol ; 8(12): 2304-2314, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37919425

RESUMO

Counting viable cells is a universal practice in microbiology. The colony-forming unit (CFU) assay has remained the gold standard to measure viability across disciplines, but it is time-intensive and resource-consuming. Here we describe the geometric viability assay (GVA) that replicates CFU measurements over 6 orders of magnitude while reducing over 10-fold the time and consumables required. GVA computes a sample's viable cell count on the basis of the distribution of embedded colonies growing inside a pipette tip. GVA is compatible with Gram-positive and Gram-negative planktonic bacteria (Escherichia coli, Pseudomonas aeruginosa and Bacillus subtilis), biofilms and fungi (Saccharomyces cerevisiae). Laborious CFU experiments such as checkerboard assays, treatment time-courses and drug screens against slow-growing cells are simplified by GVA. The ease and low cost of GVA evinces that it can replace existing viability assays and enable viability measurements at previously impractical scales.


Assuntos
Biofilmes , Escherichia coli , Contagem de Colônia Microbiana , Bactérias Gram-Negativas , Pseudomonas aeruginosa
2.
Sci Adv ; 9(31): eadg3028, 2023 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-37540744

RESUMO

How dynamic bacterial calcium is regulated, with kinetics faster than typical mechanisms of cellular adaptation, is unknown. We discover bacterial calcium fluctuations are temporal-fractals resulting from a property known as self-organized criticality (SOC). SOC processes are poised at a phase transition separating ordered and chaotic dynamical regimes and are observed in many natural and anthropogenic systems. SOC in bacterial calcium emerges due to calcium channel coupling mediated via membrane voltage. Environmental or genetic perturbations modify calcium dynamics and the critical exponent suggesting a continuum of critical attractors. Moving along this continuum alters the collective information capacity of bacterial populations. We find that the stochastic transition from motile to sessile lifestyle is partially mediated by SOC-governed calcium fluctuations through the regulation of c-di-GMP. In summary, bacteria co-opt the physics of phase transitions to maintain dynamic calcium equilibrium, and this enables cell-autonomous population diversification during surface colonization by leveraging the stochasticity inherent at a boundary between phases.


Assuntos
Bactérias , Cálcio , Bactérias/genética
3.
bioRxiv ; 2023 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-36712102

RESUMO

Counting viable cells is a universal practice in microbiology. The colony forming unit (CFU) assay has remained the gold standard to measure viability across disciplines; however, it is time-intensive and resource-consuming. Herein, we describe the Geometric Viability Assay (GVA) that replicates CFU measurements over 6-orders of magnitude while reducing over 10-fold the time and consumables. GVA computes a sample's viable cell count based on the distribution of embedded colonies growing inside a pipette tip. GVA is compatible with gram-positive and -negative planktonic bacteria, biofilms, and yeast. Laborious CFU experiments such as checkerboard assays, treatment time-courses, and drug screens against slow-growing cells are simplified by GVA. We therefore screened a drug library against exponential and stationary phase E. coli leading to the discovery of the ROS-mediated, bactericidal mechanism of diphenyliodonium. The ease and low cost of GVA evinces it can accelerate existing viability assays and enable measurements at previously impractical scales.

4.
Bioelectricity ; 3(2): 143-146, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-34476390

RESUMO

It began, as with many good things, at a happy hour. Adam Cohen, a young assistant professor asked whether rhodopsins could be used to optically sense voltage. In the heady days of 2009, channel rhodopsin had just been unveiled as a voltage actuator in neurons. Adam had the insight to question whether rhodopsins could be run in reverse; could optical changes in a protein relay the cellular voltage state using light? This was one of the earliest lessons I learned under his mentorship, and the first piece of advice in this retrospective-turning a scientific question or statement on its head can be the basis for many fantastic research projects.

5.
Microorganisms ; 9(5)2021 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-34063175

RESUMO

Changes in bacterial physiology necessarily precede cell death in response to antibiotics. Herein we investigate the early disruption of Ca2+ homeostasis as a marker for antibiotic response. Using a machine learning framework, we quantify the temporal information encoded in single-cell Ca2+ dynamics. We find Ca2+ dynamics distinguish kanamycin sensitive and resistant cells before changes in gross cell phenotypes such as cell growth or protein stability. The onset time (pharmacokinetics) and probability (pharmacodynamics) of these aberrant Ca2+ dynamics are dose and time-dependent, even at the resolution of single-cells. Of the compounds profiled, we find Ca2+ dynamics are also an indicator of Polymyxin B activity. In Polymyxin B treated cells, we find aberrant Ca2+ dynamics precedes the entry of propidium iodide marking membrane permeabilization. Additionally, we find modifying membrane voltage and external Ca2+ concentration alters the time between these aberrant dynamics and membrane breakdown suggesting a previously unappreciated role of Ca2+ in the membrane destabilization during Polymyxin B treatment. In conclusion, leveraging live, single-cell, Ca2+ imaging coupled with machine learning, we have demonstrated the discriminative capacity of Ca2+ dynamics in identifying antibiotic-resistant bacteria.

6.
J Bacteriol ; 203(3)2021 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-33199283

RESUMO

Calcium plays numerous critical roles in signaling and homeostasis in eukaryotic cells. Far less is known about calcium signaling in bacteria than in eukaryotic cells, and few genes controlling influx and efflux have been identified. Previous work in Escherichia coli showed that calcium influx was induced by voltage depolarization, which was enhanced by mechanical stimulation, which suggested a role in bacterial mechanosensation. To identify proteins and pathways affecting calcium handling in bacteria, we designed a live-cell screen to monitor calcium dynamics in single cells across a genome-wide knockout panel in E. coli The screen measured cells from the Keio collection of knockouts and quantified calcium transients across the population. Overall, we found 143 gene knockouts that decreased levels of calcium transients and 32 gene knockouts that increased levels of transients. Knockouts of proteins involved in energy production and regulation appeared, as expected, as well as knockouts of proteins of a voltage sink, F1Fo-ATPase. Knockouts of exopolysaccharide and outer membrane synthesis proteins showed reduced transients which refined our model of electrophysiology-mediated mechanosensation. Additionally, knockouts of proteins associated with DNA repair had reduced calcium transients and voltage. However, acute DNA damage did not affect voltage, and the results suggested that only long-term adaptation to DNA damage decreased membrane potential and calcium transients. Our work showed a distinct separation between the acute and long-term DNA damage responses in bacteria, which also has implications for mitochondrial DNA damage in eukaryotes.IMPORTANCE All eukaryotic cells use calcium as a critical signaling molecule. There is tantalizing evidence that bacteria also use calcium for cellular signaling, but much less is known about the molecular actors and physiological roles. To identify genes regulating cytoplasmic calcium in Escherichia coli, we created a single-cell screen for modulators of calcium dynamics. The genes uncovered in this screen helped refine a model for voltage-mediated bacterial mechanosensation. Additionally, we were able to more carefully dissect the mechanisms of adaptation to long-term DNA damage, which has implications for both bacteria and mitochondria in the face of unrepaired DNA.


Assuntos
Cálcio/metabolismo , Dano ao DNA/fisiologia , Escherichia coli/genética , Escherichia coli/metabolismo , Potenciais da Membrana/fisiologia , Polissacarídeos Bacterianos/metabolismo , Transporte Biológico , Citoplasma/metabolismo , Reparo do DNA , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Técnicas de Inativação de Genes , Homeostase
7.
Elife ; 92020 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-32748785

RESUMO

Aminoglycosides are broad-spectrum antibiotics whose mechanism of action is under debate. It is widely accepted that membrane voltage potentiates aminoglycoside activity, which is ascribed to voltage-dependent drug uptake. In this paper, we measured the response of Escherichia coli treated with aminoglycosides and discovered that the bactericidal action arises not from the downstream effects of voltage-dependent drug uptake, but rather directly from dysregulated membrane potential. In the absence of voltage, aminoglycosides are taken into cells and exert bacteriostatic effects by inhibiting translation. However, cell killing was immediate upon re-polarization. The hyperpolarization arose from altered ATP flux, which induced a reversal of the F1Fo-ATPase to hydrolyze ATP and generated the deleterious voltage. Heterologous expression of an ATPase inhibitor completely eliminated bactericidal activity, while loss of the F-ATPase reduced the electrophysiological response to aminoglycosides. Our data support a model of voltage-induced death, and separates aminoglycoside bacteriostasis and bactericide in E. coli.


Assuntos
Aminoglicosídeos/farmacologia , Antibacterianos/farmacologia , Escherichia coli/efeitos dos fármacos , Potenciais da Membrana/efeitos dos fármacos , Trifosfato de Adenosina/metabolismo , Antibacterianos/metabolismo , Membrana Externa Bacteriana/efeitos dos fármacos , Membrana Externa Bacteriana/metabolismo , Cálcio/metabolismo , Escherichia coli/metabolismo , Biossíntese de Proteínas/efeitos dos fármacos
8.
Stem Cell Reports ; 10(6): 1991-2004, 2018 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-29779896

RESUMO

Human induced pluripotent stem cell (iPSC)-derived neurons are an attractive substrate for modeling disease, yet the heterogeneity of these cultures presents a challenge for functional characterization by manual patch-clamp electrophysiology. Here, we describe an optimized all-optical electrophysiology, "Optopatch," pipeline for high-throughput functional characterization of human iPSC-derived neuronal cultures. We demonstrate the method in a human iPSC-derived motor neuron (iPSC-MN) model of amyotrophic lateral sclerosis (ALS). In a comparison of iPSC-MNs with an ALS-causing mutation (SOD1 A4V) with their genome-corrected controls, the mutants showed elevated spike rates under weak or no stimulus and greater likelihood of entering depolarization block under strong optogenetic stimulus. We compared these results with numerical simulations of simple conductance-based neuronal models and with literature results in this and other iPSC-based models of ALS. Our data and simulations suggest that deficits in slowly activating potassium channels may underlie the changes in electrophysiology in the SOD1 A4V mutation.


Assuntos
Fenômenos Eletrofisiológicos , Células-Tronco Pluripotentes Induzidas/citologia , Neurônios Motores/citologia , Neurônios Motores/fisiologia , Potenciais de Ação , Esclerose Lateral Amiotrófica , Biomarcadores , Edição de Genes , Expressão Gênica , Humanos , Imagem Molecular , Mutação , Superóxido Dismutase-1/genética , Superóxido Dismutase-1/metabolismo
9.
Sci Rep ; 7(1): 13922, 2017 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-29066766

RESUMO

Addition of glucose to starved Saccharomyces cerevisiae initiates collective NADH dynamics termed glycolytic oscillations. Numerous questions remain about the extent to which single cells can oscillate, if oscillations occur in natural conditions, and potential physiological consequences of oscillations. In this paper, we report sustained glycolytic oscillations in single cells without the need for cyanide. Glucose addition to immobilized cells induced pH oscillations that could be imaged with fluorescent sensors. A population of cells had oscillations that were heterogeneous in frequency, start time, stop time, duration and amplitude. These changes in cytoplasmic pH were necessary and sufficient to drive changes in NADH. Oscillators had lower mitochondrial membrane potentials and budded more slowly than non-oscillators. We also uncovered a new type of oscillation during recovery from H2O2 challenge. Our data show that pH in S. cerevisiae changes over several time scales, and that imaging pH offers a new way to measure glycolytic oscillations on individual cells.


Assuntos
Imagem Molecular , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/metabolismo , Sobrevivência Celular , Citoplasma/efeitos dos fármacos , Citoplasma/metabolismo , Glicólise/efeitos dos fármacos , Peróxido de Hidrogênio/farmacologia , Concentração de Íons de Hidrogênio , Saccharomyces cerevisiae/efeitos dos fármacos
10.
Proc Natl Acad Sci U S A ; 114(35): 9445-9450, 2017 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-28808010

RESUMO

Electrically excitable cells harness voltage-coupled calcium influx to transmit intracellular signals, typically studied in neurons and cardiomyocytes. Despite intense study in higher organisms, investigations of voltage and calcium signaling in bacteria have lagged due to their small size and a lack of sensitive tools. Only recently were bacteria shown to modulate their membrane potential on the timescale of seconds, and little is known about the downstream effects from this modulation. In this paper, we report on the effects of electrophysiology in individual bacteria. A genetically encoded calcium sensor expressed in Escherichia coli revealed calcium transients in single cells. A fusion sensor that simultaneously reports voltage and calcium indicated that calcium influx is induced by voltage depolarizations, similar to metazoan action potentials. Cytoplasmic calcium levels and transients increased upon mechanical stimulation with a hydrogel, and single cells altered protein concentrations dependent on the mechanical environment. Blocking voltage and calcium flux altered mechanically induced changes in protein concentration, while inducing calcium flux reproduced these changes. Thus, voltage and calcium relay a bacterial sense of touch and alter cellular lifestyle. Although the calcium effectors remain unknown, these data open a host of new questions about E. coli, including the identity of the underlying molecular players, as well as other signals conveyed by voltage and calcium. These data also provide evidence that dynamic voltage and calcium exists as a signaling modality in the oldest domain of life, and therefore studying electrophysiology beyond canonical electrically excitable cells could yield exciting new findings.


Assuntos
Canais de Cálcio/fisiologia , Cálcio/metabolismo , Escherichia coli/fisiologia , Ativação do Canal Iônico/fisiologia , Mecanotransdução Celular , Proteínas de Escherichia coli/metabolismo
11.
PLoS One ; 12(3): e0172671, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28333933

RESUMO

Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CM) are a promising platform for cardiac studies in vitro, and possibly for tissue repair in humans. However, hiPSC-CM cells tend to retain morphology, metabolism, patterns of gene expression, and electrophysiology similar to that of embryonic cardiomyocytes. We grew hiPSC-CM in patterned islands of different sizes and shapes, and measured the effect of island geometry on action potential waveform and calcium dynamics using optical recordings of voltage and calcium from 970 islands of different sizes. hiPSC-CM in larger islands showed electrical and calcium dynamics indicative of greater functional maturity. We then compared transcriptional signatures of the small and large islands against a developmental time course of cardiac differentiation. Although island size had little effect on expression of most genes whose levels differed between hiPSC-CM and adult primary CM, we identified a subset of genes for which island size drove the majority (58%) of the changes associated with functional maturation. Finally, we patterned hiPSC-CM on islands with a variety of shapes to probe the relative contributions of soluble factors, electrical coupling, and direct cell-cell contacts to the functional maturation. Collectively, our data show that optical electrophysiology is a powerful tool for assaying hiPSC-CM maturation, and that island size powerfully drives activation of a subset of genes involved in cardiac maturation.


Assuntos
Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/fisiologia , Miócitos Cardíacos/fisiologia , Potenciais de Ação/fisiologia , Cálcio/metabolismo , Diferenciação Celular/genética , Células Cultivadas , Fenômenos Eletrofisiológicos/fisiologia , Expressão Gênica/genética , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Miócitos Cardíacos/metabolismo , Análise de Sequência de RNA/métodos , Transcrição Gênica/genética
12.
J Pharmacol Toxicol Methods ; 81: 240-50, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27184445

RESUMO

INTRODUCTION: The Comprehensive in vitro Proarrhythmia Assay (CiPA) initiative seeks an in vitro test to accurately predict clinical Torsades de Pointes (TdP). We developed a cardiotoxicity assay incorporating simultaneous measurement of the action potential (AP) waveform and Ca(2+) transient (CT) in human iPSC-derived cardiomyocytes (CMs). Concurrent optogenetic pacing provided a well-controlled electrophysiological background. METHODS: We used the Optopatch platform for all-optical electrophysiology (Hochbaum et al., 2014). In a monolayer culture, a subset of cells expressed a genetically encoded, calcium and voltage reporter, CaViar (Hou, Kralj, Douglass, Engert, & Cohen, 2014), while others expressed a channelrhodopsin variant, CheRiff. Optical pacing of CheRiff-expressing cells synchronized the syncytium. We screened 12 compounds (11 acute, 1 chronic) to identify electrophysiological (AP rise time, AP50, AP90, beat rate) and CT effects in spontaneously beating and paced cultures (1Hz, 2Hz). RESULTS: CaViar reported spontaneous and paced APs and CTs with high signal-to-noise ratio and low phototoxicity. Quinidine, flecainide, E-4031, digoxin and cisapride prolonged APs, while verapamil and nifedipine shortened APs. Early after depolarizations (EADs) were elicited by quinidine, flecainide and cisapride. All but four compounds (amiodarone, chromanol, nifedipine, verapamil) prolonged AP rise time. Nifedipine and verapamil decreased CT amplitude, while digoxin increased CT amplitude. Pentamidine prolonged APs after chronic exposure. DISCUSSION: The Optopatch platform provides a robust assay to measure APs and CTs in hiPSC-CMs. This addresses the CiPA mandate and will facilitate comparisons of cell-based assays to human clinical data.


Assuntos
Cardiotoxicidade , Imagem Molecular/métodos , Optogenética/métodos , Potenciais de Ação/efeitos dos fármacos , Arritmias Cardíacas/induzido quimicamente , Arritmias Cardíacas/fisiopatologia , Bloqueadores dos Canais de Cálcio/farmacologia , Sinalização do Cálcio/efeitos dos fármacos , Estimulação Cardíaca Artificial , Avaliação Pré-Clínica de Medicamentos/métodos , Fenômenos Eletrofisiológicos/efeitos dos fármacos , Humanos , Miócitos Cardíacos/efeitos dos fármacos , Razão Sinal-Ruído
13.
Front Physiol ; 5: 344, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25309445

RESUMO

The cardiac action potential (AP) and the consequent cytosolic Ca(2+) transient are key indicators of cardiac function. Natural developmental processes, as well as many drugs and pathologies change the waveform, propagation, or variability (between cells or over time) of these parameters. Here we apply a genetically encoded dual-function calcium and voltage reporter (CaViar) to study the development of the zebrafish heart in vivo between 1.5 and 4 days post fertilization (dpf). We developed a high-sensitivity spinning disk confocal microscope and associated software for simultaneous three-dimensional optical mapping of voltage and calcium. We produced a transgenic zebrafish line expressing CaViar under control of the heart-specific cmlc2 promoter, and applied ion channel blockers at a series of developmental stages to map the maturation of the action potential in vivo. Early in development, the AP initiated via a calcium current through L-type calcium channels. Between 90 and 102 h post fertilization (hpf), the ventricular AP switched to a sodium-driven upswing, while the atrial AP remained calcium driven. In the adult zebrafish heart, a sodium current drives the AP in both the atrium and ventricle. Simultaneous voltage and calcium imaging with genetically encoded reporters provides a new approach for monitoring cardiac development, and the effects of drugs on cardiac function.

14.
Nat Methods ; 11(8): 825-33, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24952910

RESUMO

All-optical electrophysiology-spatially resolved simultaneous optical perturbation and measurement of membrane voltage-would open new vistas in neuroscience research. We evolved two archaerhodopsin-based voltage indicators, QuasAr1 and QuasAr2, which show improved brightness and voltage sensitivity, have microsecond response times and produce no photocurrent. We engineered a channelrhodopsin actuator, CheRiff, which shows high light sensitivity and rapid kinetics and is spectrally orthogonal to the QuasArs. A coexpression vector, Optopatch, enabled cross-talk-free genetically targeted all-optical electrophysiology. In cultured rat neurons, we combined Optopatch with patterned optical excitation to probe back-propagating action potentials (APs) in dendritic spines, synaptic transmission, subcellular microsecond-timescale details of AP propagation, and simultaneous firing of many neurons in a network. Optopatch measurements revealed homeostatic tuning of intrinsic excitability in human stem cell-derived neurons. In rat brain slices, Optopatch induced and reported APs and subthreshold events with high signal-to-noise ratios. The Optopatch platform enables high-throughput, spatially resolved electrophysiology without the use of conventional electrodes.


Assuntos
Mamíferos/fisiologia , Neurônios/fisiologia , Rodopsina/fisiologia , Animais , Evolução Molecular Direcionada , Proteínas Recombinantes/metabolismo , Transmissão Sináptica
15.
PLoS One ; 8(12): e85221, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24391999

RESUMO

Development of improved fluorescent voltage indicators is a key challenge in neuroscience, but progress has been hampered by the low throughput of patch-clamp characterization. We introduce a line of non-fluorescent HEK cells that stably express NaV 1.3 and KIR 2.1 and generate spontaneous electrical action potentials. These cells enable rapid, electrode-free screening of speed and sensitivity of voltage sensitive dyes or fluorescent proteins on a standard fluorescence microscope. We screened a small library of mutants of archaerhodopsin 3 (Arch) in spiking HEK cells and identified two mutants with greater voltage-sensitivity than found in previously published Arch voltage indicators.


Assuntos
Potenciais de Ação/fisiologia , Canal de Sódio Disparado por Voltagem NAV1.3/metabolismo , Neurociências/métodos , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Canais de Sódio/metabolismo , Imagens com Corantes Sensíveis à Voltagem/métodos , Proteínas Arqueais/genética , Primers do DNA/genética , Células HEK293 , Humanos , Indicadores e Reagentes , Microscopia de Fluorescência , Mutagênese , Mutação/genética , Gravação em Vídeo
16.
J Phys Chem B ; 116(50): 14592-601, 2012 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-23189985

RESUMO

Archaerhodopsin 3 (AR3) is a light driven proton pump from Halorubrum sodomense that has been used as a genetically targetable neuronal silencer and an effective fluorescent sensor of transmembrane potential. Unlike the more extensively studied bacteriorhodopsin (BR) from Halobacterium salinarum, AR3 readily incorporates into the plasma membrane of both E. coli and mammalian cells. Here, we used near-IR resonance Raman confocal microscopy to study the effects of pH and membrane potential on the AR3 retinal chromophore structure. Measurements were performed both on AR3 reconstituted into E. coli polar lipids and in vivo in E. coli expressing AR3 in the absence and presence of a negative transmembrane potential. The retinal chromophore structure of AR3 is in an all-trans configuration almost identical to BR over the entire pH range from 3 to 11. Small changes are detected in the retinal ethylenic stretching frequency and Schiff Base (SB) hydrogen bonding strength relative to BR which may be related to a different water structure near the SB. In the case of the AR3 mutant D95N, at neutral pH an all-trans retinal O-like species (O(all-trans)) is found. At higher pH a second 13-cis retinal N-like species (N(13-cis)) is detected which is attributed to a slowly decaying intermediate in the red-light photocycle of D95N. However, the amount of N(13-cis) detected is less in E. coli cells but is restored upon addition of carbonyl cyanide m-chlorophenyl hydrazone (CCCP) or sonication, both of which dissipate the normal negative membrane potential. We postulate that these changes are due to the effect of membrane potential on the N(13-cis) to M(13-cis) levels accumulated in the D95N red-light photocycle and on a molecular level by the effects of the electric field on the protonation/deprotonation of the cytoplasmic accessible SB. This mechanism also provides a possible explanation for the observed fluorescence dependence of AR3 and other microbial rhodopsins on transmembrane potential.


Assuntos
Proteínas Arqueais/química , Raios Infravermelhos , Potenciais da Membrana , Análise Espectral Raman , Sequência de Aminoácidos , Proteínas Arqueais/genética , Proteínas Arqueais/metabolismo , Bacteriorodopsinas/química , Bacteriorodopsinas/metabolismo , Citoplasma/metabolismo , Escherichia coli/citologia , Escherichia coli/genética , Halorubrum , Ligação de Hidrogênio , Dados de Sequência Molecular , Mutagênese , Mutação , Bases de Schiff/química
17.
Photochem Photobiol ; 88(1): 90-7, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22010969

RESUMO

Microbial rhodopsins are an important class of light-activated transmembrane proteins whose function is typically studied on bulk samples. Herein, we apply photochromic fluorescence resonance energy transfer to investigate the dynamics of these proteins with sensitivity approaching the single-molecule limit. The brightness of a covalently linked organic fluorophore is modulated by changes in the absorption spectrum of the endogenous retinal chromophore that occur as the molecule undergoes a light-activated photocycle. We studied the photocycles of blue-absorbing proteorhodopsin and sensory rhodopsin II (SRII). Clusters of 2-3 molecules of SRII clearly showed a light-induced photocycle. Single molecules of SRII showed a photocycle upon signal averaging over several illumination cycles.


Assuntos
Transferência Ressonante de Energia de Fluorescência , Rodopsina/fisiologia , Fotoquímica
18.
J Biol Phys ; 38(1): 153-68, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23277676

RESUMO

Archaerhodopsin-3 (AR3) is a light-driven proton pump from Halorubrum sodomense, but little is known about its photocycle. Recent interest has focused on AR3 because of its ability to serve both as a high-performance, genetically-targetable optical silencer of neuronal activity and as a membrane voltage sensor. We examined light-activated structural changes of the protein, retinal chromophore, and internal water molecules during the photocycle of AR3. Low-temperature and rapid-scan time-resolved FTIR-difference spectroscopy revealed that conformational changes during formation of the K, M, and N photocycle intermediates are similar, although not identical, to bacteriorhodopsin (BR). Positive/negative bands in the region above 3,600 cm( - 1), which have previously been assigned to structural changes of weakly hydrogen bonded internal water molecules, were substantially different between AR3 and BR. This included the absence of positive bands recently associated with a chain of proton transporting water molecules in the cytoplasmic channel and a weakly hydrogen bonded water (W401), which is part of a hydrogen-bonded pentagonal cluster located near the retinal Schiff base. However, many of the broad IR continuum absorption changes below 3,000 cm( - 1) assigned to networks of water molecules involved in proton transport through cytoplasmic and extracellular portions in BR were very similar in AR3. This work and subsequent studies comparing BR and AR3 structural changes will help identify conserved elements in BR-like proton pumps as well as bioengineer AR3 to optimize neural silencing and voltage sensing.

19.
Nat Methods ; 9(1): 90-5, 2011 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-22120467

RESUMO

Reliable optical detection of single action potentials in mammalian neurons has been one of the longest-standing challenges in neuroscience. Here we achieved this goal by using the endogenous fluorescence of a microbial rhodopsin protein, Archaerhodopsin 3 (Arch) from Halorubrum sodomense, expressed in cultured rat hippocampal neurons. This genetically encoded voltage indicator exhibited an approximately tenfold improvement in sensitivity and speed over existing protein-based voltage indicators, with a roughly linear twofold increase in brightness between -150 mV and +150 mV and a sub-millisecond response time. Arch detected single electrically triggered action potentials with an optical signal-to-noise ratio >10. Arch(D95N) lacked endogenous proton pumping and had 50% greater sensitivity than wild type but had a slower response (41 ms). Nonetheless, Arch(D95N) also resolved individual action potentials. Microbial rhodopsin-based voltage indicators promise to enable optical interrogation of complex neural circuits and electrophysiology in systems for which electrode-based techniques are challenging.


Assuntos
Potenciais de Ação/fisiologia , Halorrodopsinas/metabolismo , Neurônios/fisiologia , Animais , Membrana Celular/metabolismo , Corantes Fluorescentes/metabolismo , Células HEK293 , Halorrodopsinas/genética , Halorubrum/química , Hipocampo/citologia , Humanos , Óptica e Fotônica , Ratos
20.
Science ; 333(6040): 345-8, 2011 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-21764748

RESUMO

Bacteria have many voltage- and ligand-gated ion channels, and population-level measurements indicate that membrane potential is important for bacterial survival. However, it has not been possible to probe voltage dynamics in an intact bacterium. Here we developed a method to reveal electrical spiking in Escherichia coli. To probe bacterial membrane potential, we engineered a voltage-sensitive fluorescent protein based on green-absorbing proteorhodopsin. Expression of the proteorhodopsin optical proton sensor (PROPS) in E. coli revealed electrical spiking at up to 1 hertz. Spiking was sensitive to chemical and physical perturbations and coincided with rapid efflux of a small-molecule fluorophore, suggesting that bacterial efflux machinery may be electrically regulated.


Assuntos
Escherichia coli/fisiologia , Potenciais da Membrana , Rodopsina/metabolismo , Potenciais de Ação , Escherichia coli/genética , Fluorescência , Corantes Fluorescentes , Concentração de Íons de Hidrogênio , Canais Iônicos/metabolismo , Transporte de Íons , Luz , Prótons , Rodaminas/metabolismo , Rodopsina/química , Rodopsina/genética , Rodopsinas Microbianas , Espectrometria de Fluorescência , Estresse Fisiológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...