Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Soft Matter ; 18(18): 3583-3593, 2022 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-35475456

RESUMO

We consider a system of granular particles, modeled by two dimensional frictional soft elastic disks, that is exposed to externally applied time-dependent shear stress in a planar Couette geometry. We concentrate on the external forcing that produces intermittent dynamics of stick-slip type. In this regime, the top wall remains almost at rest until the applied stress becomes sufficiently large, and then it slips. We focus on the evolution of the system as it approaches a slip event. Our main finding is that there are two distinct groups of measures describing system behavior before a slip event. The first group consists of global measures defined as system-wide averages at a fixed time. Typical examples of measures in this group are averages of the normal or tangent forces acting between the particles, system size and number of contacts between the particles. These measures do not seem to be sensitive to an approaching slip event. On average, they tend to increase linearly with the force pulling the spring. The second group consists of the time-dependent measures that quantify the evolution of the system on a micro (particle) or mesoscale. Measures in this group first quantify the temporal differences between two states and only then aggregate them to a single number. For example, Wasserstein distance quantitatively measures the changes of the force network as it evolves in time while the number of broken contacts quantifies the evolution of the contact network. The behavior of the measures in the second group changes dramatically before a slip event starts. They increase rapidly as a slip event approaches, indicating a significant increase in fluctuations of the system before a slip event is triggered.

2.
Chaos ; 31(3): 033126, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33810731

RESUMO

History dependence of the evolution of complex systems plays an important role in forecasting. The precision of the predictions declines as the memory of the systems is lost. We propose a simple method for assessing the rate of memory loss that can be applied to experimental data observed in any metric space X. This rate indicates how fast the future states become independent of the initial condition. Under certain regularity conditions on the invariant measure of the dynamical system, we prove that our method provides an upper bound on the mixing rate of the system. This rate can be used to infer the longest time scale on which the predictions are still meaningful. We employ our method to analyze the memory loss of a slowly sheared granular system with a small inertial number I. We show that, even if I is kept fixed, the rate of memory loss depends erratically on the shear rate. Our study suggests the presence of bifurcations at which the rate of memory loss increases with the shear rate, while it decreases away from these points. We also find that the rate of memory loss is closely related to the frequency of the sudden transitions of the force network. Moreover, the rate of memory loss is also well correlated with the loss of correlation of shear stress measured at the system scale. Thus, we have established a direct link between the evolution of force networks and the macroscopic properties of the considered system.

3.
J Appl Comput Topol ; 3(1-2): 85-118, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32110719

RESUMO

We present a generalization of the induced matching theorem of as reported by Bauer and Lesnick (in: Proceedings of the thirtieth annual symposium computational geometry 2014) and use it to prove a generalization of the algebraic stability theorem for ℝ -indexed pointwise finite-dimensional persistence modules. Via numerous examples, we show how the generalized algebraic stability theorem enables the computation of rigorous error bounds in the space of persistence diagrams that go beyond the typical formulation in terms of bottleneck (or log bottleneck) distance.

4.
Phys Rev E ; 97(4-1): 042903, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29758651

RESUMO

We carry out a direct comparison of experimental and numerical realizations of the exact same granular system as it undergoes shear jamming. We adjust the numerical methods used to optimally represent the experimental settings and outcomes up to microscopic contact force dynamics. Measures presented here range from microscopic through mesoscopic to systemwide characteristics of the system. Topological properties of the mesoscopic force networks provide a key link between microscales and macroscales. We report two main findings: (1) The number of particles in the packing that have at least two contacts is a good predictor for the mechanical state of the system, regardless of strain history and packing density. All measures explored in both experiments and numerics, including stress-tensor-derived measures and contact numbers depend in a universal manner on the fraction of nonrattler particles, f_{NR}. (2) The force network topology also tends to show this universality, yet the shape of the master curve depends much more on the details of the numerical simulations. In particular we show that adding force noise to the numerical data set can significantly alter the topological features in the data. We conclude that both f_{NR} and topological metrics are useful measures to consider when quantifying the state of a granular system.

6.
Nat Commun ; 6: 7723, 2015 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-26194875

RESUMO

Social and biological contagions are influenced by the spatial embeddedness of networks. Historically, many epidemics spread as a wave across part of the Earth's surface; however, in modern contagions long-range edges-for example, due to airline transportation or communication media-allow clusters of a contagion to appear in distant locations. Here we study the spread of contagions on networks through a methodology grounded in topological data analysis and nonlinear dimension reduction. We construct 'contagion maps' that use multiple contagions on a network to map the nodes as a point cloud. By analysing the topology, geometry and dimensionality of manifold structure in such point clouds, we reveal insights to aid in the modelling, forecast and control of spreading processes. Our approach highlights contagion maps also as a viable tool for inferring low-dimensional structure in networks.


Assuntos
Transmissão de Doença Infecciosa , Métodos Epidemiológicos , Estatística como Assunto , Meios de Transporte
7.
Phys Rev E Stat Nonlin Soft Matter Phys ; 90(5-1): 052203, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25493787

RESUMO

We discuss sets of measures with the goal of describing dynamical properties of force networks in dense particulate systems. The presented approach is based on persistent homology and allows for extracting precise, quantitative measures that describe the evolution of geometric features of the interparticle forces, without necessarily considering the details related to individual contacts between particles. The networks considered emerge from discrete element simulations of two-dimensional particulate systems consisting of compressible frictional circular disks. We quantify the evolution of the networks for slowly compressed systems undergoing jamming transition. The main findings include uncovering significant but localized changes of force networks for unjammed systems, global (systemwide) changes as the systems evolve through jamming, to be followed by significantly less dramatic evolution for the jammed states. We consider both connected components, related in a loose sense to force chains, and loops and find that both measures provide a significant insight into the evolution of force networks. In addition to normal, we consider also tangential forces between the particles and find that they evolve in the consistent manner. Consideration of both frictional and frictionless systems leads us to the conclusion that friction plays a significant role in determining the dynamical properties of the considered networks. We find that the proposed approach describes the considered networks in a precise yet tractable manner, making it possible to identify features which could be difficult or impossible to describe using other approaches.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...