Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Metrologia ; 56(5)2019.
Artigo em Inglês | MEDLINE | ID: mdl-32116391

RESUMO

The question of how to relate particle sizes measured using a fixed-angle dynamic light scattering (DLS) instrument with those measured using a multi-angle DLS instrument is addressed. A series of nearly monodisperse polystyrene latex (PSL) particles with nominal diameters of 100 nm, 70 nm, 50 nm, and 30 nm were measured using two different types of DLS instruments: one owned by the National Metrology Institute of Japan (NMIJ) of the multi-angle type and the other owned by the National Institute of Standards and Technology (NIST) of the fixed-angle type. The mean particle size of the PSL particles was measured using the multi-angle-type instrument at various scattering angles and at various concentrations of particle suspension. These data were used to establish the functional dependence of the measured particle size on the scattering angle and particle concentration through the least-squares fitting method. The established function was then used to predict the mean particle sizes that would have been obtained if the same scattering angle and particle concentrations as those used at NIST had been selected at NMIJ. The mean particle sizes obtained at NIST and at NMIJ agreed quite well for all four PSL particle samples after compensating for the angle and concentration differences. The result of this study clearly demonstrates that consideration for the dependence of measured particle sizes on the scattering angle and particle concentration is crucial in intra-method comparisons of mean particle sizes obtained using DLS.

2.
Opt Express ; 24(15): 16574-85, 2016 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-27464112

RESUMO

In-line metrologies currently used in the semiconductor industry are being challenged by the aggressive pace of device scaling and the adoption of novel device architectures. Metrology and process control of three-dimensional (3-D) high-aspect-ratio (HAR) features are becoming increasingly important and also challenging. In this paper we present a feasibility study of through-focus scanning optical microscopy (TSOM) for 3-D shape analysis of HAR features. TSOM makes use of 3-D optical data collected using a conventional optical microscope for 3-D shape analysis. Simulation results of trenches and holes down to the 11 nm node are presented. The ability of TSOM to analyze an array of HAR features or a single isolated HAR feature is also presented. This allows for the use of targets with area over 100 times smaller than that of conventional gratings, saving valuable real estate on the wafers. Indications are that the sensitivity of TSOM may match or exceed the International Technology Roadmap for Semiconductors (ITRS) measurement requirements for the next several years. Both simulations and preliminary experimental results are presented. The simplicity, lowcost, high throughput, and nanometer scale 3-D shape sensitivity of TSOM make it an attractive inspection and process monitoring solution for nanomanufacturing.

3.
J Res Natl Inst Stand Technol ; 116(4): 703-27, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-26989594

RESUMO

The evolution of the atomic force microscope into a useful tool for measuring mechanical properties of surfaces at the nanoscale has spurred the need for more precise and accurate methods for calibrating the spring constants of test cantilevers. Groups within international standards organizations such as the International Organization for Standardization and the Versailles Project on Advanced Materials and Standards (VAMAS) are conducting studies to determine which methods are best suited for these calibrations and to try to improve the reproducibility and accuracy of these measurements among different laboratories. This paper expands on a recent mini round robin within VAMAS Technical Working Area 29 to measure the spring constant of a single batch of triangular silicon nitride cantilevers sent to three international collaborators. Calibration techniques included reference cantilever, added mass, and two forms of thermal methods. Results are compared to measurements traceable to the International System of Units provided by an electrostatic force balance. A series of guidelines are also discussed for procedures that can improve the running of round robins in atomic force microscopy.

4.
Rev Sci Instrum ; 79(9): 095105, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19044452

RESUMO

We present a measurement scheme for creating reference electrostatic forces that are traceable to the International System of Units. This scheme yields reference forces suitable for calibrating the force sensitivity of instrumented indentation machines and atomic force microscopes. Forces between 10 and 200 muN were created and expressed in terms of the voltage, length, and capacitance between a pair of interacting electrodes. The electrodes comprised an electrically conductive sphere mounted as a tip on an instrumented indentation sensor, and a planar counterelectrode fixed to a sample stage in close proximity to the sphere. For comparison, we applied mechanical forces of similar magnitudes, first using deadweights and then using a reference force sensor. The deflection of the sensor due to the various applied forces was measured using an interferometer. A spring constant for the sensor was computed from the observed records of force versus displacement. Each procedure yielded a relative standard uncertainty of approximately 1%; however, the electrostatic technique is scalable and could provide traceable reference forces as small as a few hundred piconewtons, a range far below anything yet achieved using deadweights.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...