Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Childs Nerv Syst ; 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38775956

RESUMO

PURPOSE: Langerhans cell histiocytosis (LCH) is a rare condition arising from the monoclonal expansion of myeloid precursor cells, which results in granulomatous lesions that characteristically express CD1a/CD207. We report a case of LCH in a 3-year-old male involving the sphenoid bone with extension into the sellar/suprasellar region. CASE REPORT: A 3-year-old male presented with progressively worsening headaches and associated night sweats, neck stiffness, and fatigue over the previous 4 weeks. Magnetic resonance imaging (MRI) revealed a 2.4-cm lytic lesion within the basisphenoid, exerting mass effect upon the pituitary gland. A biopsy was performed to determine the etiology of the lesion. Postoperatively, the patient developed an intralesional hematoma with visual complications requiring emergent surgical resection via endoscopic endonasal approach. Final pathology confirmed LCH. The patient had improvement in his vision long term. CONCLUSIONS: LCH extending into the sella is a rare but important diagnosis to consider in pediatric patients presenting with lesions in this region. We presented a case of a pediatric patient presenting with LCH of the sphenoid bone extending into the sella, with subsequent apoplexy and vision loss. Review of the literature showed varying treatment options for these patients, including purely surgical and non-surgical treatments. Early intervention may be necessary to avoid potentially devastating neurologic sequelae.

2.
World Neurosurg ; 185: 74-88, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38272305

RESUMO

Traumatic brain injury (TBI) is a critical public health concern with profound consequences for affected individuals. This comprehensive literature review delves into TBI intricacies, encompassing primary injury biomechanics and the molecular pathophysiology of the secondary injury cascade. Primary TBI involves a complex interplay of forces, including impact loading, blast overpressure, and impulsive loading, leading to diverse injury patterns. These forces can be categorized into inertial (e.g., rotational acceleration causing focal and diffuse injuries) and contact forces (primarily causing focal injuries like skull fractures). Understanding their interactions is crucial for effective injury management. The secondary injury cascade in TBI comprises multifaceted molecular and cellular responses, including altered ion concentrations, dysfunctional neurotransmitter networks, oxidative stress, and cellular energy disturbances. These disruptions impair synaptic function, neurotransmission, and neuroplasticity, resulting in cognitive and behavioral deficits. Moreover, neuroinflammatory responses play a pivotal role in exacerbating damage. As we endeavor to bridge the knowledge gap between biomechanics and molecular pathophysiology, further research is imperative to unravel the nuanced interplay between mechanical forces and their consequences at the molecular and cellular levels, ultimately guiding the development of targeted therapeutic strategies to mitigate the debilitating effects of TBI. In this study, we aim to provide a concise review of the bridge between biomechanical processes causing primary injury and the ensuing molecular pathophysiology of secondary injury, while detailing the subsequent clinical course for this patient population. This knowledge is crucial for advancing our understanding of TBI and developing effective interventions to improve outcomes for those affected.


Assuntos
Lesões Encefálicas Traumáticas , Humanos , Lesões Encefálicas Traumáticas/fisiopatologia , Fenômenos Biomecânicos/fisiologia , Animais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...