Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Exp Med Biol ; 1370: 311-321, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35882806

RESUMO

In many experimental studies, pharmacological levels of taurine have been used to study physiological functions of taurine. However, this approach is unlikely to be fruitful, as pharmacological administration increases extracellular taurine, while physiological actions of taurine require alterations in intracellular taurine. Recognizing that different mechanisms might underlie the pharmacological and physiological actions of taurine, cardiac properties before and after exposure to various extracellular or intracellular concentrations of taurine were examined. To assess the effect of physiological taurine, myocardial contractility and metabolic status were compared in hearts containing different intracellular taurine concentrations. By contrast, the pharmacological actions of taurine were assessed in normal hearts perfused with buffer containing or lacking 10 mM taurine. Both pharmacological and physiological taurine increased contractile function and oxygen consumption. Yet, the pharmacological actions of taurine on contractile function were dependent on the L-type Ca2+ channel, while the sarcoplasmic reticular Ca2+ ATPase contributed to the physiological actions of taurine. ATP generation from available substrates, glucose, fatty acids, and acetate was increased for both the physiological and pharmacological actions of taurine. However, taurine supplementation enhanced ATP generation by elevating respiratory chain complex I activity and by stimulating metabolic flux through reductions in the NADH/NAD+ ratio, while the pharmacological actions of taurine can be traced to elevations in [Ca2+]i and the observed positive inotropic effect. Thus, the mechanisms underlying the pharmacological actions of taurine on contractile function and energy metabolism are entirely different than those contributing to the physiological actions of taurine.


Assuntos
Coração , Taurina , Trifosfato de Adenosina/metabolismo , Metabolismo Energético , Coração/fisiologia , Miocárdio/metabolismo , Taurina/metabolismo , Taurina/farmacologia
2.
Mol Cell Biochem ; 465(1-2): 175-185, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31853800

RESUMO

Cutaneous changes like rash and hair loss, as well as other neurogenic inflammation side effects, occur frequently during anticancer treatment with the epidermal growth factor receptor-tyrosine kinase inhibitor (EGFR-TKI), erlotinib. These adverse events may be so severe that they impair the patient's compliance with the treatment or even cause its discontinuation. In the current preclinical study, rats (9.2 weeks) were treated with erlotinib (10 mg/kg/day) ± aprepitant (2 mg/kg/day) for 12 weeks. Visual changes in the development of facial skin lesions/hair loss and SP-receptor expression (immunohistochemically) in facial skin tissue were assessed; also changes in plasma magnesium, 8-isoprostane, substance P (SP), neutrophil superoxide production, and cardiac function (echocardiography) were measured. Erlotinib lowered plasma magnesium 14%, elevated SP 65%, caused 3.7-fold higher basal superoxide production, 2.5-fold higher 8-isoprostane levels, 11.6% lower cardiac systolic, and 10.9% lower diastolic function. Facial dermatological changes (alopecia, skin reddening, scabbing, nose crusting) occurred by 4 weeks (± + to ++) in erlotinib-treated rats, and progressively worsened (±++ to +++) by week 12. Facial skin SP-receptor upregulation (78% higher) occurred in epidermal and hair follicle cells. All adverse effects were substantially and significantly mitigated by aprepitant, including a 62% lowering of skin SP-receptors (p < 0.05). Elevated SP levels mediated the side effects of erlotinib treatment, but aprepitant's significant prevention of the systemic and cutaneous adverse events indicates a novel potential therapy against the side effects of this anticancer treatment.


Assuntos
Aprepitanto/farmacologia , Toxidermias , Cloridrato de Erlotinib/efeitos adversos , Doenças do Sistema Nervoso , Antagonistas dos Receptores de Neurocinina-1/farmacologia , Animais , Toxidermias/tratamento farmacológico , Toxidermias/metabolismo , Toxidermias/patologia , Cloridrato de Erlotinib/farmacologia , Masculino , Doenças do Sistema Nervoso/induzido quimicamente , Doenças do Sistema Nervoso/tratamento farmacológico , Doenças do Sistema Nervoso/metabolismo , Doenças do Sistema Nervoso/patologia , Ratos , Ratos Sprague-Dawley
3.
PLoS One ; 14(1): e0210107, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30668566

RESUMO

We determined if HIV-1 expression in transgenic (HIV-1-Tg) rats enhanced hepatic genomic changes related to oxidative/nitrosative stress and lipogenesis during cART-treatment, and assessed effects of Mg-supplementation. A clinically used cART (atazanavir-ritonavir+Truvada) was given orally to control and HIV-1-Tg rats (18 weeks) with normal or 6-fold dietary-Mg. Oxidative/nitrosative and lipogenic genes were determined by real-time RT-PCR. cART induced a 4-fold upregulation of sterol regulatory element-binding protein-1 (SREBP-1) in HIV-1-Tg-rats, but not in controls; Tg rats displayed a 2.5-fold higher expression. Both were completely prevented by Mg-supplementation. Nrf2 (Nuclear erythroid-derived factor 2), a master transcription factor controlling redox homeostasis, was down-regulated 50% in HIV-Tg rats, and reduced further to 25% in Tg+cART-rats. Two downstream antioxidant genes, heme oxygenase-1(HmOX1) and Glutathione-S-transferase(GST), were elevated in HIV-Tg alone but were suppressed by cART treatment. Decreased Nrf2 in Tg±cART were normalized by Mg-supplementation along with the reversal of altered HmOX1 and GST expression. Concomitantly, iNOS (inducible nitric oxide synthase) was upregulated 2-fold in Tg+cART rats, which was reversed by Mg-supplementation. In parallel, cART-treatment led to substantial increases in plasma 8-isoprostane, nitrotyrosine, and RBC-GSSG (oxidized glutathione) levels in HIV-1-Tg rats; all indices of oxidative/nitrosative stress were suppressed by Mg-supplementation. Both plasma triglyceride and cholesterol levels were elevated in Tg+cART rats, but were lowered by Mg-supplementation. Thus, the synergistic effects of cART and HIV-1 expression on lipogenic and oxidative/nitrosative effects were revealed at the genomic and biochemical levels. Down-regulation of Nrf2 in the Tg+cART rats suggested their antioxidant response was severely compromised; these abnormal metabolic and oxidative stress effects were effectively attenuated by Mg-supplementation at the genomic level.


Assuntos
Antirretrovirais/efeitos adversos , Suplementos Nutricionais , Regulação da Expressão Gênica/efeitos dos fármacos , Infecções por HIV/tratamento farmacológico , Magnésio/administração & dosagem , Animais , Sulfato de Atazanavir/efeitos adversos , Modelos Animais de Doenças , Combinação Emtricitabina e Fumarato de Tenofovir Desoproxila/efeitos adversos , Infecções por HIV/patologia , Infecções por HIV/virologia , HIV-1/genética , HIV-1/patogenicidade , Humanos , Lipogênese/efeitos dos fármacos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Masculino , Fator 2 Relacionado a NF-E2/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Oxirredução/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Ratos , Ratos Endogâmicos F344 , Ratos Transgênicos , Ritonavir/efeitos adversos
4.
Int J Mol Sci ; 19(8)2018 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-30111743

RESUMO

Chronic effects of a combination antiretroviral therapy (cART = tenofovir/emtricitatine + atazanavir/ritonavir) on systemic and cardiac oxidative stress/injury in HIV-1 transgenic (Tg) rats and protection by Mg-supplementation were assessed. cART (low doses) elicited no significant effects in normal rats, but induced time-dependent oxidative/nitrosative stresses: 2.64-fold increased plasma 8-isoprostane, 2.0-fold higher RBC oxidized glutathione (GSSG), 3.2-fold increased plasma 3-nitrotyrosine (NT), and 3-fold elevated basal neutrophil superoxide activity in Tg rats. Increased NT staining occurred within cART-treated HIV-Tg hearts, and significant decreases in cardiac systolic and diastolic contractile function occurred at 12 and 18 weeks. HIV-1 expression alone caused modest levels of oxidative stress and cardiac dysfunction. Significantly, cART caused up to 24% decreases in circulating Mg in HIV-1-Tg rats, associated with elevated renal NT staining, increased creatinine and urea levels, and elevated plasma substance P levels. Strikingly, Mg-supplementation (6-fold) suppressed all oxidative/nitrosative stress indices in the blood, heart and kidney and substantially attenuated contractile dysfunction (>75%) of cART-treated Tg rats. In conclusion, cART caused significant renal and cardiac oxidative/nitrosative stress/injury in Tg-rats, leading to renal Mg wasting and hypomagnesemia, triggering substance P-dependent neurogenic inflammation and cardiac dysfunction. These events were effectively attenuated by Mg-supplementation likely due to its substance P-suppressing and Mg's intrinsic anti-peroxidative/anti-calcium properties.


Assuntos
Antirretrovirais/efeitos adversos , Coração/efeitos dos fármacos , Magnésio/uso terapêutico , Inflamação Neurogênica/induzido quimicamente , Inflamação Neurogênica/prevenção & controle , Estresse Oxidativo/efeitos dos fármacos , Substâncias Protetoras/uso terapêutico , Animais , Terapia Antirretroviral de Alta Atividade/efeitos adversos , Cardiotoxinas/efeitos adversos , Expressão Gênica , Infecções por HIV/tratamento farmacológico , HIV-1/efeitos dos fármacos , HIV-1/genética , Coração/fisiopatologia , Rim/efeitos dos fármacos , Rim/fisiopatologia , Masculino , Inflamação Neurogênica/fisiopatologia , Ativação de Neutrófilo/efeitos dos fármacos , Estresse Nitrosativo/efeitos dos fármacos , Ratos Endogâmicos F344 , Ratos Transgênicos
5.
J Cardiovasc Pharmacol ; 65(1): 54-61, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25343568

RESUMO

To determine whether the epidermal growth factor receptor tyrosine kinase inhibitor, erlotinib may cause hypomagnesemia, inflammation, and cardiac stress, erlotinib was administered to rats (10 mg · kg(-1)· d(-1)) for 9 weeks. Plasma magnesium decreased progressively between 3 and 9 weeks (-9% to -26%). Modest increases in plasma substance P (SP) occurred at 3 (27%) and 9 (25%) weeks. Neutrophil superoxide-generating activity increased 3-fold, and plasma 8-isoprostane rose 210%, along with noticeable appearance of cardiac perivascular nitrotyrosine. The neurokinin-1 (NK-1) receptor antagonist, aprepitant (2 mg · kg(-1) · d(-1)), attenuated erlotinib-induced hypomagnesemia up to 42%, reduced circulating SP, suppressed neutrophil superoxide activity and 8-isoprostane elevations; cardiac nitrotyrosine was diminished. Echocardiography revealed mild to moderately decreased left ventricular ejection fraction (-11%) and % fractional shortening (-17%) by 7 weeks of erlotinib treatment and significant reduction (-17.5%) in mitral valve E/A ratio at week 9 indicative of systolic and early diastolic dysfunction. Mild thinning of the left ventricular posterior wall suggested early dilated cardiomyopathy. Aprepitant completely prevented the erlotinib-induced systolic and diastolic dysfunction and partially attenuated the anatomical changes. Thus, chronic erlotinib treatment does induce moderate hypomagnesemia, triggering SP-mediated oxidative/inflammation stress and mild-to-moderate cardiac dysfunction, which can largely be corrected by the administration of the SP receptor blocker.


Assuntos
Receptores ErbB/antagonistas & inibidores , Estresse Oxidativo/efeitos dos fármacos , Inibidores de Proteínas Quinases/toxicidade , Quinazolinas/toxicidade , Animais , Aprepitanto , Ecocardiografia , Cloridrato de Erlotinib , Magnésio/sangue , Masculino , Morfolinas/farmacologia , Antagonistas dos Receptores de Neurocinina-1/farmacologia , Ratos , Ratos Sprague-Dawley , Receptores da Neurocinina-1/efeitos dos fármacos , Receptores da Neurocinina-1/metabolismo , Substância P/sangue , Função Ventricular Esquerda/efeitos dos fármacos
6.
Am J Physiol Regul Integr Comp Physiol ; 305(10): R1102-11, 2013 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-24049113

RESUMO

Use of protease inhibitors (PI) in HIV patients is associated with hyperlipidemia and increased risk of coronary heart disease. Chronic systemic and cardiac effects of ritonavir (RTV), a universal PI booster, and Mg supplementation were examined. RTV was administered (75 mg·kg(-1)·day(-1) po) to Lewis × Brown-Norway hybrid (LBNF1) rats for up to 8 wk; significant increases in plasma triglyceride and cholesterol occurred from 8 days to 8 wk. At 5 wk, the expression of selected hepatic genes (CYP7A1, CITED2, G6PC, and ME-1), which are key to lipid catabolism/synthesis, were altered toward lipogenesis. Dietary Mg supplementation (six-fold higher) completely reversed the altered expression of these genes and attenuated both hypertriglyceridemia and hypercholesterolemia. Neutrophils isolated from the RTV-treated rats displayed a three-fold higher basal and a twofold higher stimulated superoxide production; plasma isoprostane and red blood cell (RBC) GSSG levels were elevated two- to three-fold. All oxidative indices were normalized by Mg supplementation. After 5 wk, RTV caused significant decreases in cardiac left ventricular (LV) shortening fraction and LV ejection fraction; mitral valve early/late atrial ventricular filling (E/A) ratio was reduced accompanied by LV posterior wall thinning. Immunohistochemical staining revealed significant white blood cell (WBC) infiltration (5 wk) and prominent fibrosis (8 wk) in the RTV hearts. Mg supplementation attenuated RTV-induced declines in systolic and diastolic (improved mitral valve E/A ratio) function (>70%), lessened LV posterior wall thinning (by 75%), and substantially decreased the pathological markers. The known clinical hyperlipidemia effects of RTV can be mimicked in the LBNF1 rats; in association, systemic oxidative stress and progressive cardiac dysfunction occurred. Remarkably, Mg supplementation alone suppressed RTV-mediated hyperlipidemia, oxidative stress, and cardiac dysfunction.


Assuntos
Cardiopatias/induzido quimicamente , Hiperlipidemias/induzido quimicamente , Magnésio/uso terapêutico , Estresse Oxidativo/efeitos dos fármacos , Ritonavir/toxicidade , Ração Animal , Animais , Dieta , Suplementos Nutricionais , Regulação da Expressão Gênica/efeitos dos fármacos , Inibidores da Protease de HIV/toxicidade , Cardiopatias/tratamento farmacológico , Masculino , Ratos , Aumento de Peso
7.
Int J Biol Sci ; 9(4): 350-60, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23630447

RESUMO

BACKGROUND: Anthracyclines, such as doxorubicin (Adriamycin), are highly effective chemotherapeutic agents, but are well known to cause myocardial dysfunction and life-threatening congestive heart failure (CHF) in some patients. METHODS: To generate new hypotheses about its etiology, genome-wide transcript analysis was performed on whole blood RNA from women that received doxorubicin-based chemotherapy and either did, or did not develop CHF, as defined by ejection fractions (EF)≤40%. Women with non-ischemic cardiomyopathy unrelated to chemotherapy were compared to breast cancer patients prior to chemo with normal EF to identify heart failure-related transcripts in women not receiving chemotherapy. Byproducts of oxidative stress in plasma were measured in a subset of patients. RESULTS: The results indicate that patients treated with doxorubicin showed sustained elevations in oxidative byproducts in plasma. At the RNA level, women who exhibited low EFs after chemotherapy had 260 transcripts that differed >2-fold (p<0.05) compared to women who received chemo but maintained normal EFs. Most of these transcripts (201) were not altered in non-chemotherapy patients with low EFs. Pathway analysis of the differentially expressed genes indicated enrichment in apoptosis-related transcripts. Notably, women with chemo-induced low EFs had a 4.8-fold decrease in T-cell leukemia/lymphoma 1A (TCL1A) transcripts. TCL1A is expressed in both cardiac and skeletal muscle, and is a known co-activator for AKT, one of the major pro-survival factors for cardiomyocytes. Further, women who developed low EFs had a 2-fold lower level of ABCB1 transcript, encoding the multidrug resistance protein 1 (MDR1), which is an efflux pump for doxorubicin, potentially leading to higher cardiac levels of drug. In vitro studies confirmed that inhibition of MDR1 by verapamil in rat H9C2 cardiomyocytes increased their susceptibility to doxorubicin-induced toxicity. CONCLUSIONS: It is proposed that chemo-induced cardiomyopathy may be due to a reduction in TCL1A levels, thereby causing increased apoptotic sensitivity, and leading to reduced cardiac MDR1 levels, causing higher cardiac levels of doxorubicin and intracellular free radicals. If so, screening for TCL1A and MDR1 SNPs or expression level in blood, might identify women at greatest risk of chemo-induced heart failure.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/deficiência , Antineoplásicos/efeitos adversos , Proteínas Proto-Oncogênicas/deficiência , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Animais , Antraciclinas/efeitos adversos , Antraciclinas/uso terapêutico , Antineoplásicos/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Cardiomiopatias/induzido quimicamente , Cardiomiopatias/metabolismo , Células Cultivadas , Doxorrubicina/efeitos adversos , Doxorrubicina/uso terapêutico , Feminino , Humanos , Proteínas Proto-Oncogênicas/metabolismo , Ratos
8.
Can J Physiol Pharmacol ; 90(9): 1257-68, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22913465

RESUMO

d-Propranolol (d-Pro: 2-8 mg·(kg body mass)(-1)·day(-1)) protected against cardiac dysfunction and oxidative stress during 3-5 weeks of iron overload (2 mg Fe-dextran·(g body mass)(-1)·week(-1)) in Sprague-Dawley rats. At 3 weeks, hearts were perfused in working mode to obtain baseline function; red blood cell glutathione, plasma 8-isoprostane, neutrophil basal superoxide production, lysosomal-derived plasma N-acetyl-ß-galactosaminidase (NAGA) activity, ventricular iron content, and cardiac iron deposition were assessed. Hearts from the Fe-treated group of rats exhibited lower cardiac work (26%) and output (CO, 24%); end-diastolic pressure rose 1.8-fold. Further, glutathione levels increased 2-fold, isoprostane levels increased 2.5-fold, neutrophil superoxide increased 3-fold, NAGA increased 4-fold, ventricular Fe increased 4.9-fold; and substantial atrial and ventricular Fe-deposition occurred. d-Pro (8 mg) restored heart function to the control levels, protected against oxidative stress, and decreased cardiac Fe levels. After 5 weeks of Fe treatment, echocardiography revealed that the following were depressed: percent fractional shortening (%FS, 31% lower); left ventricular (LV) ejection fraction (LVEF, 17%), CO (25%); and aortic pressure maximum (P(max), 24%). Mitral valve E/A declined by 18%, indicating diastolic dysfunction. Cardiac CD11b+ infiltrates were elevated. Low d-Pro (2 mg) provided modest protection, whereas 4-8 mg greatly improved LVEF (54%-75%), %FS (51%-81%), CO (43%-78%), P(max) (56%-100%), and E/A >100%; 8 mg decreased cardiac inflammation. Since d-Pro is an antioxidant and reduces cardiac Fe uptake as well as inflammation, these properties may preserve cardiac function during Fe overload.


Assuntos
Antagonistas Adrenérgicos beta/uso terapêutico , Cardiopatias/prevenção & controle , Sobrecarga de Ferro/tratamento farmacológico , Estresse Oxidativo/efeitos dos fármacos , Propranolol/uso terapêutico , Acetilglucosaminidase/sangue , Antagonistas Adrenérgicos beta/administração & dosagem , Antagonistas Adrenérgicos beta/química , Animais , Débito Cardíaco/efeitos dos fármacos , Progressão da Doença , Relação Dose-Resposta a Droga , Ecocardiografia , Eritrócitos/efeitos dos fármacos , Eritrócitos/metabolismo , Glutationa , Cardiopatias/sangue , Cardiopatias/etiologia , Cardiopatias/metabolismo , Sobrecarga de Ferro/sangue , Sobrecarga de Ferro/complicações , Sobrecarga de Ferro/metabolismo , Masculino , Miocárdio/metabolismo , Neutrófilos/efeitos dos fármacos , Neutrófilos/enzimologia , Perfusão , Propranolol/administração & dosagem , Propranolol/química , Ratos , Ratos Sprague-Dawley , Estereoisomerismo , Superóxido Dismutase/metabolismo , Resultado do Tratamento
9.
Can J Physiol Pharmacol ; 90(8): 1145-9, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22646904

RESUMO

We determined whether the epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI) N-​(3-​chlorophenyl)-​6,​7-​dimethoxy-​4-​quinazolinamine (tyrphostin AG-1478) causes hypomagnesemia and cardiac dysfunction in rats. Tyrphostin was administered (3 times per week, intraperitoneal injection, to achieve 21.4 mg·(kg body mass)(-1)·day(-1)) to normomagnesemic rats for 5 weeks. Levels of magnesium in the plasma of the tyrphostin-treated rats decreased significantly by the following amount: 17% at week 1, 27% at week 2, and 26%-35% between weeks 3 to 5. Levels of the plasma lipid peroxidation marker 8-isoprostane rose significantly: by 58% at week 1, 168% at week 3, and 113% at week 5. At week 5, blood neutrophils from the tyrphostin-treated group displayed a 2.26-fold higher basal level of O(2)(·-) generation; the ratio of oxidized glutathione (glutathione disulfide; GSSG) to reduced glutathione (GSH) in the red blood cells increased 2.5-fold. At week 5, echocardiography revealed that TKI treatment resulted in significant cardiac systolic dysfunction, with impaired diastolic function and dilated cardiomyopathy. Since hypomagnesemia alone can trigger oxidative stress and cardiac injury, we suggest that inhibition of EGFR-TK caused magnesium wasting, which partly contributed to decreased cardiac contractility.


Assuntos
Ecocardiografia/efeitos dos fármacos , Inibidores Enzimáticos/efeitos adversos , Receptores ErbB/antagonistas & inibidores , Proteínas Tirosina Quinases/antagonistas & inibidores , Quinazolinas/efeitos adversos , Erros Inatos do Transporte Tubular Renal/induzido quimicamente , Tirfostinas/efeitos adversos , Animais , Biomarcadores/sangue , Cálcio/sangue , Dinoprosta/análogos & derivados , Dinoprosta/sangue , Ecocardiografia/métodos , Ecocardiografia/estatística & dados numéricos , Glutationa/sangue , Masculino , Estresse Oxidativo , Ratos , Ratos Sprague-Dawley , Erros Inatos do Transporte Tubular Renal/sangue , Superóxidos/sangue
10.
Exp Clin Cardiol ; 16(4): 121-4, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22131854

RESUMO

BACKGROUND/OBJECTIVE: Hypomagnesemia (Hypo-Mg) in rodents leads to neurogenic inflammation associated with substance P (SP) elevations; neutral endopeptidase (NEP) is a principle cell surface proteolytic enzyme, which degrades SP. The effects of chronic Hypo-Mg on neutrophil NEP activity, cell activation and the associated cardiac dysfunction were examined. METHODS/RESULTS: Male Sprague-Dawley rats (180 g) were fed Mg-sufficient or Mg-deficient (Hypo-Mg) diets for five weeks. Enriched blood neutrophils were isolated at the end of one, three and five weeks by step gradient centrifugation. NEP enzymatic activity decreased by 20% (P value was nonsignificant), 50% (P<0.025) and 57% (P<0.01), respectively, for week 1, 3 and 5 Hypo-Mg rats. In association, neutrophil basal superoxide (•O(2) (-))-generating activities were elevated: 30% at week 1 (P value was nonsignificant), and fourfold to sevenfold for weeks 3 to 5 (P<0.01). Maximal phorbol myristate acetate-stimulated •O(2) (-) production by Hypo-Mg neutrophils increased twofold at week 5. Also, plasma 8-isoprostane levels were elevated twofold to threefold, and red blood cell glutathione decreased by 50% (P<0.01) after three to five weeks of chronic Hypo-Mg. When Hypo-Mg rats were treated with the SP receptor blocker (L-703,606), neutrophil NEP activities were retained at 75% (week 3) and 77% (week 5) (P<0.05); activation of neutrophil •O(2) (-) and other oxidative indexes were also significantly (P<0.05) attenuated. After five weeks, histochemical (hematoxylin and eosin) staining of Hypo-Mg-treated rat ventricles revealed significant white blood cell infiltration, which was substantially reduced by L-703,606. Echocardiography after three weeks of Hypo-Mg only showed modest diastolic impairment, but five weeks resulted in significant (P<0.05) depression in both left ventricular systolic and diastolic functions; changes in these functional parameters were attenuated by L-703,606. CONCLUSION: NEP activity regulates neutrophil •O(2) (-) formation by controlling SP bioavailability. When oxidative inactivation of NEP is prevented by SP receptor blockade, partial protection is afforded against cardiac contractile dysfunction.

11.
Am J Med Sci ; 342(2): 125-8, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21747282

RESUMO

In rodents with dietary magnesium deficiency (Mg deficiency), hypomagnesemia, occurs leading to a rise in circulating substance P from neuronal tissues to trigger systemic inflammatory stress in cardiac and intestinal tissues. Sustained elevations of substance P may result from impaired neutral endopeptidase (NEP) activity due to reactive oxygen and reactive nitrogen species. Associated increase in intestinal permeability includes infiltration of WBC and endotoxemia, which can further amplify the systemic inflammatory response that leads to impaired contractile function associated with up-regulation of the cardiac CD14 endotoxin receptor. The neurogenic signal transduction pathways that we have identified in the pro-oxidant/pro-inflammatory processes found with prolonged hypomagnesemia are described in this report.


Assuntos
Sistema Cardiovascular/metabolismo , Mucosa Intestinal/metabolismo , Deficiência de Magnésio , Estresse Oxidativo/fisiologia , Animais , Sistema Cardiovascular/fisiopatologia , Humanos , Inflamação/metabolismo , Inflamação/fisiopatologia , Intestinos/fisiopatologia , Deficiência de Magnésio/metabolismo , Deficiência de Magnésio/fisiopatologia , Neprilisina/metabolismo , Ratos , Espécies Reativas de Nitrogênio/metabolismo , Receptores Imunológicos/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Substância P/fisiologia
12.
Magnes Res ; 23(4): S199-206, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20971697

RESUMO

Hypomagnesemia continues to cause difficult clinical problems, such as significant cardiac arrhythmias where intravenous magnesium therapy can be lifesaving. Nutritional deficiency of magnesium may present with some subtle symptoms such as leg cramps and occasional palpitation. We have investigated dietary-induced magnesium deficiency in rodent models to assess the pathobiology associated with prolonged hypomagnesemia. We found that neuronal sources of the neuropeptide, substance P (SP), contributed to very early prooxidant/proinflammatory changes during Mg deficiency. This neurogenic inflammation is systemic in nature, affecting blood cells, cardiovascular, intestinal, and other tissues, leading to impaired cardiac contractility similar to that seen in patients with heart failure. We have used drugs that block the release of SP from neurons and SP-receptor blockers to prevent some of these pathobiological changes; whereas, blocking SP catabolism enhances inflammation. Our findings emphasize the essential role of this cation in preventing cardiomyopathic changes and intestinal inflammation in a well-studied animal model, and also implicate the need for more appreciation of the potential clinical relevance of optimal magnesium nutrition and therapy.


Assuntos
Doenças Cardiovasculares/imunologia , Doenças Cardiovasculares/metabolismo , Mucosa Intestinal/metabolismo , Intestinos/imunologia , Deficiência de Magnésio/metabolismo , Deficiência de Magnésio/fisiopatologia , Animais , Humanos , Deficiência de Magnésio/imunologia , Receptores da Neurocinina-1/metabolismo , Substância P/metabolismo
13.
Magnes Res ; 22(3): 167S-173S, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19780404

RESUMO

During dietary deficiency of magnesium neurogenic inflammation is mediated, primarily, by elevated levels of substance P (SP). The enzyme most specific for degrading this neuropeptide is neutral endopeptidase (NEP). In recent studies we found that pharmacological inhibition of NEP by phosphoramidon resulted in elevated plasma levels of SP and greater oxidative stress. We also observed that hypomagnesemia reduced cardiac and intestinal expression of NEP. In these magnesium-deficient rats increased intestinal permeability and impaired cardiac contractility occurred. In our colony of genetically-engineered NEP knockout mice that have reduced ability to degrade SP, we found increased oxidative stress that was prevented by SP (neurokinin-1) receptor blockade. Thus, we submit that inhibition of NEP by pharmacological, genetic and dietary approaches (magnesium restriction), causes greater neurogenic inflammation that may result in increased intestinal and cardiac dysfunction.


Assuntos
Deficiência de Magnésio/complicações , Neprilisina/antagonistas & inibidores , Inflamação Neurogênica/etiologia , Substância P/metabolismo , Animais , Glicopeptídeos/farmacologia , Coração/efeitos dos fármacos , Imuno-Histoquímica , Intestinos/efeitos dos fármacos , Inflamação Neurogênica/metabolismo , Inibidores de Proteases/farmacologia , Ratos , Regulação para Cima
14.
Am J Med Sci ; 338(1): 22-7, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19593099

RESUMO

Hypomagnesemia continues to be a significant clinical disorder that is present in patients with diabetes mellitus, alcoholism, and treatment with magnesuric drugs (diuretics, cancer chemotherapy agents, etc.). To determine the role of magnesium in cardiovascular pathophysiology, we have used dietary restriction of this cation in animal models. This review highlights some key observations that helped formulate the hypothesis that release of substance P (SP) during experimental dietary Mg deficiency (MgD) may initiate a cascade of deleterious inflammatory, oxidative, and nitrosative events, which ultimately promote cardiomyopathy, in situ cardiac dysfunction, and myocardial intolerance to secondary stresses. SP acts primarily through neurokinin-1 receptors of inflammatory and endothelial cells, and may induce production of reactive oxygen and nitrogen species (superoxide anion, NO*, peroxynitrite, hydroxyl radical), leading to enhanced consumption of tissue antioxidants; stimulate release of inflammatory mediators; promote tissue adhesion molecule expression; and enhance inflammatory cell tissue infiltration and cardiovascular lesion formation. These SP-mediated events may predispose the heart to injury if faced with subsequent oxidative stressors (ischemia/reperfusion, certain drugs) or facilitate development of in situ cardiac dysfunction, especially with prolonged dietary Mg restriction. Significant protection against most of these MgD-mediated events has been observed with interventions that modulate neuronal SP release or its bioactivity, and with several antioxidants (vitamin E, probucol, epicaptopril, d-propranolol). In view of the clinical prevalence of hypomagnesemia, new treatments, beyond magnesium repletion, may be needed to diminish deleterious neurogenic and prooxidative components described in this article.


Assuntos
Cardiomiopatias , Deficiência de Magnésio/complicações , Inflamação Neurogênica , Animais , Cardiomiopatias/etiologia , Cardiomiopatias/fisiopatologia , Dieta , Endotoxemia/metabolismo , Humanos , Traumatismo por Reperfusão Miocárdica/metabolismo , Inflamação Neurogênica/etiologia , Inflamação Neurogênica/fisiopatologia , Neuropeptídeos/metabolismo , Estresse Oxidativo , Ratos , Receptores de N-Metil-D-Aspartato/metabolismo , Receptores da Neurocinina-1/metabolismo
15.
Cardiovasc Toxicol ; 9(2): 78-85, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19484392

RESUMO

Cardiovascular effects of chronic AZT treatment on SD male rats (185 g) fed either a normal Mg diet (0.1% MgO) or a high Mg diet (0.6% MgO) were examined. AZT treatment (1 mg/ml drinking water) for 3 weeks led to a 5.5-fold (0.88 +/- 0.11 nmol/min/10(6) cells, P < 0.05) elevation in neutrophil basal activity of O2(-) production versus controls (0.16 +/- 0.03 nmol/min, assayed ex vivo as SOD-inhibitable cytochrome c reduction). Concomitantly, plasma 8-isoprostane and PGE(2) levels rose 2.1-fold and 3-fold (both P < 0.05), respectively, compared to control; however, RBC GSH decreased 28% (P < 0.02) with GSSG content increased 3-fold, indicative of systemic oxidative stress. High Mg diet substantially attenuated the AZT-induced neutrophil activation by 70% (0.26 +/- 0.05 nmol/min, P < 0.05); reduced plasma 8-isoprostane and PGE(2) to levels comparable to normal; and RBC GSH was restored back to 92% of control. AZT alone caused moderate, but significant vascular inflammatory lesions in the heart (assessed by H&E staining). Immunohistochemical staining revealed significantly higher (about 4-fold) infiltration of CD11b positive cells (WBC surface marker) in the atria and ventricles of AZT-treated rats. However, these inflammatory pathological markers were minimal in samples of rats treated with AZT plus high Mg diet. Moreover, AZT alone significantly (P < 0.02) decreased rat weight gain by 21% at 3 weeks; Mg-supplementation completely prevented (P < 0.05) the weight gain loss due to AZT intake. It is concluded that high dietary Mg may provide beneficial effects against AZT toxicity due to its systemic antioxidative/anti-inflammatory properties.


Assuntos
Doenças Cardiovasculares/prevenção & controle , Suplementos Nutricionais , Magnésio/administração & dosagem , Estresse Oxidativo/efeitos dos fármacos , Zidovudina/toxicidade , Animais , Doenças Cardiovasculares/induzido quimicamente , Doenças Cardiovasculares/metabolismo , Doenças Cardiovasculares/patologia , Masculino , Estresse Oxidativo/fisiologia , Ratos , Ratos Sprague-Dawley
16.
Heart Fail Rev ; 11(1): 35-44, 2006 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-16819576

RESUMO

Magnesium is a micronutrient essential for the normal functioning of the cardiovascular system, and Mg deficiency (MgD) is frequently associated in the clinical setting with chronic pathologies such as CHF, diabetes, hypertension, and other pathologies. Animal models of MgD have demonstrated a systemic pro-inflammatory/pro-oxidant state, involving multiple tissues/organs including neuronal, hematopoietic, cardiovascular, and gastrointestinal systems; during later stages of MgD, a cardiomyopathy develops which may result from a cascade of inflammatory events. In rodent models of dietary MgD, a significant rise in circulating levels of proinflammatory neuropeptides such as substance P (SP) and calcitonin gene-related peptide among others, was observed within days (1-7) of initiating the Mg-restricted diet, and implicated a neurogenic trigger for the subsequent inflammatory events; this early "neurogenic inflammation" phase may be mediated in part, by the Mg-gated N: -methyl-D-aspartate (NMDA) receptor/channel complex. Deregulation of the NMDA receptor may trigger the abrupt release of neuronal SP from the sensory-motor C-fibers to promote the subsequent pro-inflammatory changes: elevations in circulating inflammatory cells, inflammatory cytokines, histamine, and PGE(2) levels, as well as formation of nitric oxide, reactive oxygen species, lipid peroxidation products, and depletion of key endogenous antioxidants. Concurrent elevations of tissue CD14, a high affinity receptor for lipopolyssacharide, suggest that intestinal permeability may be compromised leading to endotoxemia. If exposure to these early (1-3 weeks MgD) inflammatory/pro-oxidant events becomes prolonged, this might lead to impaired cardiac function, and when co-existing with other pathologies, may enhance the risk of developing chronic heart failure.


Assuntos
Insuficiência Cardíaca/fisiopatologia , Deficiência de Magnésio/fisiopatologia , Animais , Antioxidantes/farmacologia , Insuficiência Cardíaca/etiologia , Humanos , Inflamação/metabolismo , Deficiência de Magnésio/complicações , Deficiência de Magnésio/metabolismo , Miocárdio/metabolismo , Antagonistas dos Receptores de Neurocinina-1 , Neurônios/fisiologia , Óxido Nítrico/fisiologia , Estresse Oxidativo/fisiologia , Receptores de N-Metil-D-Aspartato/fisiologia , Substância P/fisiologia
17.
Exp Biol Med (Maywood) ; 231(4): 473-84, 2006 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16565443

RESUMO

The benefits of acute D-propranolol (D-Pro, non-beta-adrenergic receptor blocker) pretreatment against enhanced ischemia/reperfusion (I/R) injury of hearts from moderate iron-overloaded rats were examined. Perfused hearts from iron-dextran-treated rats (450 mg/kg/week for 3 weeks, intraperitoneal administration) exhibited normal control function, despite iron treatment that elevated plasma iron and conjugated diene levels by 8.1-and 2.5-fold, respectively. However, these hearts were more susceptible to 25 mins of global I/R stress compared with non-loaded hearts; the coronary flow rate, aortic output, cardiac work, left ventricular systolic pressure, positive differential left ventricular pressure (dP/dt), and left ventricular developed pressure displayed 38%, 60%, 55%, 13%, 41%, and 15% lower recoveries, respectively, and a 6.5-fold increase in left ventricular end-diastolic pressure. Postischemic hearts from iron-loaded rats also exhibited 5.6-, 3.48-, 2.43-, and 3.45-fold increases in total effluent iron content, conjugated diene levels, lactate dehydrogenase (LDH) activity, and lysosomal N-acetyl-beta-glucosaminidase (NAGA) activity, respectively, compared with similarly stressed non-loaded hearts. A comparison of detection time profiles during reperfusion suggests that most of the oxidative injury (conjugated diene) in hearts from iron-loaded rats occurred at later times of reperfusion (8.5-15 mins), and this corresponded with heightened tissue iron and NAGA release. D-Pro (2 microM infused for 30 mins) pretreatment before ischemia protected all parameters compared with the untreated iron-loaded group; pressure indices improved 1.2- to 1.6-fold, flow parameters improved 1.70- to 2.96-fold, cardiac work improved 2.87-fold, and end-diastolic pressure was reduced 56%. D-Pro lowered total release of tissue iron, conjugated diene content, LDH activity, and NAGA activity 4.59-, 2.55-, 3.04-, and 4.14-fold, respectively, in the effluent of I/R hearts from the iron-loaded group. These findings suggest that the enhanced postischemic dysfunction and tissue injury of hearts from iron-loaded rats was caused by excessive iron-catalyzed free radical stress, and that the membrane antioxidant properties of D-Pro and its stabilization of sequestered lysosomal iron by D-Pro may contribute to the cardioprotective actions of D-Pro.


Assuntos
Coração/efeitos dos fármacos , Complexo Ferro-Dextran/farmacologia , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Propranolol/farmacologia , Animais , Antioxidantes/farmacologia , Pressão Sanguínea/efeitos dos fármacos , Débito Cardíaco/efeitos dos fármacos , Circulação Coronária/efeitos dos fármacos , Coração/fisiologia , Técnicas In Vitro , Complexo Ferro-Dextran/sangue , Fígado/metabolismo , Lisossomos/metabolismo , Masculino , Ratos , Ratos Sprague-Dawley
18.
Magnes Res ; 16(2): 91-7, 2003 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-12892378

RESUMO

The regulatory role of substance-P (SP) on neutrophil and endothelium activation as well as nitric oxide (NO) production induced by Mg-deficiency was examined. Male Sprague-Dawley rats (180 g) were fed either a Mg-deficient (MgD) or Mg-sufficient (MgS) diet for 3 weeks. Enriched neutrophil fractions (> 85%) isolated from whole blood of the Mg-deficient rats displayed an 11-fold (p < 0.001) higher basal superoxide anion producing activity (assayed as SOD-inhibitable cytochrome c reduction) compared to that obtained from the MgS rats. Treatment of the MgD rats with the specific SP-receptor (SPR) blocker, L-703,606 (1 mg/kg/day as s.c. implanted sustained-release pellets) attenuated the superoxide anion producing activity by 75% (p < 0.025). In parallel, circulating prostacyclin (PGI2) level (assayed as 6-keto-PGF-1alpha) was elevated 13-fold in the MgD rats, but was reduced 90% by L-703,606 treatment. Concomitantly, plasma NO products (nitrate + nitrite), which increased 2.2-fold during Mg-deficiency, were completely suppressed by the SPR blockade. When the isolated hearts were subjected to ischemia/ reperfusion stress, NO products were elevated 2.4-fold in the effluent of the MgD group compared to MgS; such heightened NO release was also attenuated after in vivo treatment with the SPR blocker. In conclusion, SP plays a direct role in promoting activation of the neutrophil and endothelium as well as induction of NO production; these processes might participate in the oxidative stress that contributes to the depletion of blood glutathione and cardiac pathology.


Assuntos
Células Endoteliais/citologia , Deficiência de Magnésio , Antagonistas dos Receptores de Neurocinina-1 , Neutrófilos/citologia , Animais , Ânions , Epoprostenol/metabolismo , Glutationa/sangue , Magnésio/metabolismo , Masculino , Neutrófilos/metabolismo , Óxido Nítrico/metabolismo , Perfusão , Quinuclidinas/farmacologia , Ratos , Ratos Sprague-Dawley , Superóxidos
19.
Exp Biol Med (Maywood) ; 228(6): 665-73, 2003 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-12773697

RESUMO

Severe dietary Mg restriction (Mg(9), 9% of recommended daily allowance [RDA], plasma Mg = 0.25 mM) induces a pro-inflammatory neurogenic response in rats (substance P [SP]), and the associated increases in oxidative stress in vivo and cardiac susceptibility to ischemia/reperfusion (I/R) injury were previously shown to be attenuated by SP receptor blockade and antioxidant treatment. The present study assessed if less severe dietary Mg restriction modulates the extent of both the neurogenic/oxidative responses in vivo and I/R injury in vitro. Male Sprague-Dawley rats maintained on Mg(40) (40% RDA, plasma Mg = 0.6 mM) or Mg(100) (100% RDA, plasma Mg = 0.8 mM) diets were assessed for plasma SP levels (CHEM-ELISA) during the first 3 weeks and were compared with the Mg(9) group; red blood cell (RBC) glutathione and plasma malondialdehyde levels were compared at 3 weeks in Mg(9), Mg(20) (plasma Mg = 0.4 mM), Mg(40), and Mg(100) rats; and 40-min global ischemia/30-min reperfusion hearts from 7-week-old Mg(20), Mg(40), and Mg(100) rats were compared with respect to functional recovery (cardiac work, and diastolic, systolic, and developed pressures), tissue LDH release, and free radical production (ESR spectroscopy and alpha-phenyl-N-tert butylnitrone [PBN; 3 mM] spin trapping). The Mg(40) diet induced smaller elevations in plasma SP (50% lower) compared with Mg(9), but with a nearly identical time course. RBC glutathione and plasma malondialdehyde levels revealed a direct relationship between the severity of oxidative stress and hypomagnesemia. The dominant lipid free radical species detected in all I/R groups was the alkoxyl radical (PBN/alkoxyl: alpha(H) = 1.93 G, alpha(N) = 13.63 G); however, Mg(40) and Mg(20) hearts exhibited 2.7- and 3.9-fold higher alkoxyl levels, 40% and 65% greater LDH release, and lower functional recovery (Mg(20) < Mg(40)) compared with Mg(100). Our data suggest that varying dietary Mg intake directly influences the magnitude of the neurogenic/oxidative responses in vivo and the resultant myocardial tolerance to I/R stress.


Assuntos
Deficiência de Magnésio/sangue , Deficiência de Magnésio/complicações , Magnésio/farmacologia , Isquemia Miocárdica/sangue , Traumatismo por Reperfusão Miocárdica/sangue , Inflamação Neurogênica/sangue , Substância P/sangue , Animais , Modelos Animais de Doenças , Espectroscopia de Ressonância de Spin Eletrônica , Ensaio de Imunoadsorção Enzimática/métodos , Eritrócitos/efeitos dos fármacos , Eritrócitos/metabolismo , Glutationa/sangue , Hemodinâmica/efeitos dos fármacos , Hemodinâmica/fisiologia , Magnésio/sangue , Masculino , Malondialdeído/sangue , Isquemia Miocárdica/fisiopatologia , Estresse Oxidativo , Ratos , Ratos Sprague-Dawley , Detecção de Spin
20.
Mol Cell Biochem ; 245(1-2): 141-8, 2003 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-12708753

RESUMO

Cardioprotection by Mg Sulfate (MgSO4) during ischemia/reperfusion (I/R) is attributed largely to the Mg2+ cation. However, Mg-gluconate (MgGl2) may provide added benefit, possibly through its anion's antioxidant properties. Protective effects of both Mg-salts and their anions during 30 min global I and 50 min R were assessed in Langendorff-perfused (Krebs-Henseleit buffer) rat hearts. Recovery of function was compared between untreated hearts and those receiving supplement (2.4 mM MgGl2, MgSO4, or Na2SO4, or 4.8 mM NaGI) for 5 min prior to I and during the initial 30 min R. The final 20 min R was conducted without supplement. End diastolic pressure (EDP, mmHg) of the 50 min reperfused MgGl2 group (2.6) was lower than MgSO4 (16.2) and untreated (35.6) groups, and the NaGI group (25.2) was considerably lower than Na2SO4 (38.8). Recovery of developed pressure (% preischemic DP) at the onset of R for MgGl2 (74.9) was greater than MgSO4 (37.9) and untreated (33.2). After 50 min, MgGl2 (77.9) and MgSO4 (66.9) provided protection compared to untreated (51.8). In separate studies, ESR spin trapping with alpha-phenyl-N-tert-butylnitrone (3 mM PBN) showed that I/R alkoxyl radical production was reduced with MgGl2 (0.0 vs. 2.4 vs. 3.6 mM: 184 vs. 97 vs. 54.8 nM/g tissue x min) to a greater extent than seen with MgSO4 (3.6 mM: 108). Additional studies suggest that Gl(1-), unlike SO4(2-), may scavenge hydroxyl radicals, accounting for the added protection. MgGl2 treated hearts exhibited less postischemic dysfunction and oxidative injury compared to MgSO4, suggesting the contribution of Gl(1-) to cardioprotection.


Assuntos
Ácido Glucurônico/metabolismo , Magnésio/metabolismo , Traumatismo por Reperfusão Miocárdica/metabolismo , Estresse Oxidativo , Sulfatos/metabolismo , Animais , Pressão Sanguínea/efeitos dos fármacos , Débito Cardíaco/efeitos dos fármacos , Radicais Livres/metabolismo , Coração/efeitos dos fármacos , Frequência Cardíaca/efeitos dos fármacos , Peroxidação de Lipídeos/efeitos dos fármacos , Masculino , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Traumatismo por Reperfusão Miocárdica/fisiopatologia , Miocárdio/metabolismo , Ratos , Ratos Sprague-Dawley , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...