Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ecol Evol ; 14(5): e11372, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38742184

RESUMO

Large-scale barcoding projects help to aggregate information on genetic variability of multiple species throughout their ranges. Comparing DNA sequences of both non-conspecific and conspecific individuals from distant parts of their ranges helps to compare level of genetic isolation-by-distance patterns in different species and adaptive types. We compared mitochondrial CO1 gene sequences of 223 spiders from Georgia (Caucasus), representing 124 species and eight families, with 3097 homological sequences from spiders mostly from Europe, but also from other parts of the World. In most families, a significant isolation-by distance pattern was observed on family level. On species level, a significant isolation-by-distance was observed in 40 species, although this low proportion is most likely related to a lack of data. Simultaneously, remarkable differences in spatial structure were shown for different species. Although the majority of the studied species have a broad western Palearctic range, web-building spiders from families Araneidae, Theridiidae, and Linyphiidae are less isolated spatially than flower spiders (Thomisidae), jumping spiders (Salticidae), wolf spiders (Lycosidae), sac spiders (Clubionidae), and ground spiders (Gnaphosidae). This pattern is related with more common ballooning in web building than in actively hunting spiders, which commonly remain isolated since preglacial time. Ground spiders build the most isolated populations in the Caucasus.

2.
PLoS One ; 11(9): e0162624, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27681175

RESUMO

As part of the German Barcode of Life campaign, over 3500 arachnid specimens have been collected and analyzed: ca. 3300 Araneae and 200 Opiliones, belonging to almost 600 species (median: 4 individuals/species). This covers about 60% of the spider fauna and more than 70% of the harvestmen fauna recorded for Germany. The overwhelming majority of species could be readily identified through DNA barcoding: median distances between closest species lay around 9% in spiders and 13% in harvestmen, while in 95% of the cases, intraspecific distances were below 2.5% and 8% respectively, with intraspecific medians at 0.3% and 0.2%. However, almost 20 spider species, most notably in the family Lycosidae, could not be separated through DNA barcoding (although many of them present discrete morphological differences). Conspicuously high interspecific distances were found in even more cases, hinting at cryptic species in some instances. A new program is presented: DiStats calculates the statistics needed to meet DNA barcode release criteria. Furthermore, new generic COI primers useful for a wide range of taxa (also other than arachnids) are introduced.

3.
Syst Biol ; 65(3): 478-94, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26797695

RESUMO

DNA-based species delimitation may be compromised by limited sampling effort and species rarity, including "singleton" representatives of species, which hampers estimates of intra- versus interspecies evolutionary processes. In a case study of southern African chafers (beetles in the family Scarabaeidae), many species and subclades were poorly represented and 48.5% of species were singletons. Using cox1 sequences from >500 specimens and ∼100 species, the Generalized Mixed Yule Coalescent (GMYC) analysis as well as various other approaches for DNA-based species delimitation (Automatic Barcode Gap Discovery (ABGD), Poisson tree processes (PTP), Species Identifier, Statistical Parsimony), frequently produced poor results if analyzing a narrow target group only, but the performance improved when several subclades were combined. Hence, low sampling may be compensated for by "clade addition" of lineages outside of the focal group. Similar findings were obtained in reanalysis of published data sets of taxonomically poorly known species assemblages of insects from Madagascar. The low performance of undersampled trees is not due to high proportions of singletons per se, as shown in simulations (with 13%, 40% and 52% singletons). However, the GMYC method was highly sensitive to variable effective population size ([Formula: see text]), which was exacerbated by variable species abundances in the simulations. Hence, low sampling success and rarity of species affect the power of the GMYC method only if they reflect great differences in [Formula: see text] among species. Potential negative effects of skewed species abundances and prevalence of singletons are ultimately an issue about the variation in [Formula: see text] and the degree to which this is correlated with the census population size and sampling success. Clade addition beyond a limited study group can overcome poor sampling for the GMYC method in particular under variable [Formula: see text] This effect was less pronounced for methods of species delimitation not based on coalescent models.


Assuntos
Classificação/métodos , Filogenia , Animais , Besouros/classificação , Besouros/genética , Simulação por Computador , DNA/genética , Complexo IV da Cadeia de Transporte de Elétrons/genética , Madagáscar , Densidade Demográfica , Tamanho da Amostra
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...