Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 13002, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38844510

RESUMO

Monitoring sandy shoreline evolution from years to decades is critical to understand the past and predict the future of our coasts. Optical satellite imagery can now infer such datasets globally, but sometimes with large uncertainties, poor spatial resolution, and thus debatable outcomes. Here we validate and analyse satellite-derived-shoreline positions (1984-2021) along the Atlantic coast of Europe using a moving-averaged approach based on coastline characteristics, indicating conservative uncertainties of long-term trends around 0.4 m/year and a potential bias towards accretion. We show that west-facing open coasts are more prone to long-term erosion, whereas relatively closed coasts favor accretion, although most of computed trends fall within the range of uncertainty. Interannual shoreline variability is influenced by regionally dominant atmospheric climate indices. Quasi-straight open coastlines typically show the strongest and more alongshore-uniform links, while embayed coastlines, especially those not exposed to the dominant wave climate, show weaker and more variable correlation with the indices. Our results provide a spatial continuum between previous local-scale studies, while emphasizing the necessity to further reduce satellite-derived shoreline trend uncertainties. They also call for applications based on a relevant averaging approach and the inclusion of coastal setting parameters to unravel the forcing-response spectrum of sandy shorelines globally.

2.
Nat Commun ; 14(1): 8259, 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38086812

RESUMO

Muddy coasts provide ecological habitats, supply food and form a natural coastal defence. Relative sea level rise, changing wave energy and human interventions will increase the pressure on muddy coastal zones. For sustainable coastal management it is key to obtain information on the geomorphology of and historical changes along muddy areas. So far, little is known about the distribution and behaviour of muddy coasts at a global scale. In this study we present a global scale assessment of the occurrence of muddy coasts and rates of coastline change therein. We combine publicly available satellite imagery and coastal geospatial datasets, to train an automated classification method to identify muddy coasts. We find that 14% of the world's ice-free coastline is muddy, of which 60% is located in the tropics. Furthermore, the majority of the world's muddy coasts are eroding at rates exceeding 1 m/yr over the last three decades.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...