Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Med ; 32(9): 1088-94, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27544862

RESUMO

Planning of the deep-space exploration missions raises a number of questions on the radiation protection of astronauts. One of the medical concerns is associated with exposure of a crew to highly energetic particles of galactic cosmic rays. Among many other health disorders, irradiation with these particles has a substantial impact on the central nervous system (CNS). Although radiation damage to CNS has been addressed extensively during the last years, the mechanisms underlying observed impairments remain mostly unknown. The present study reveals neurochemical and behavioural alterations induced in rats by 1Gy of 500MeV/u (12)C particles with a relatively moderate linear energy transfer (10.6keV/µm). It is found that exposure to carbon ions leads to significant modification of the normal monoamine metabolism dynamics as well as the locomotor, exploratory, and anxiety-like behaviours during a two-month period. The obtained results indicate an abnormal redistribution of monoamines and their metabolites in different brain regions after exposure. The most pronounced impairments are detected in the prefrontal cortex, nucleus accumbens, and hypothalamus that illustrate the sensitivity of these brain regions to densely ionizing radiations. It is also shown that exposure to (12)C particles enhances the anxiety in animals and accelerates the age-related reduction in their exploratory capability. The observed monoamine metabolism pattern may indicate the presence of certain compensatory mechanisms being induced in response to irradiation and capable of partial restoration of monoaminergic systems' functions. Overall, these findings support a possibility of CNS damage by space-born particles of a relatively moderate linear energy transfer.


Assuntos
Aminas/metabolismo , Comportamento Animal , Encéfalo/metabolismo , Carbono/química , Íons , Proteção Radiológica/métodos , Animais , Encéfalo/efeitos da radiação , Radiação Cósmica , Relação Dose-Resposta à Radiação , Hipotálamo/efeitos da radiação , Transferência Linear de Energia , Masculino , Núcleo Accumbens/efeitos da radiação , Córtex Pré-Frontal/efeitos da radiação , Doses de Radiação , Lesões por Radiação , Radiação Ionizante , Ratos , Ratos Sprague-Dawley , Voo Espacial
2.
J Theor Biol ; 366: 115-30, 2015 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-25261728

RESUMO

We have developed a model approach to simulate the major pathways of DNA double-strand break (DSB) repair in mammalian and human cells. The proposed model shows a possible mechanistic explanation of the basic regularities of DSB processing through the non-homologous end-joining (NHEJ), homologous recombination (HR), single-strand annealing (SSA) and two alternative end-joining pathways. It reconstructs the time-courses of radiation-induced foci specific to particular repair processes including the major intermediate stages. The model is validated for ionizing radiations of a wide range of linear energy transfer (0.2-236 keV/µm) including a relatively broad spectrum of heavy ions. The appropriate set of reaction rate constants was suggested to satisfy the kinetics of DSB rejoining for the considered types of exposure. The simultaneous assessment of several repair pathways allows to describe their possible biological relations in response to irradiation. With the help of the proposed approach, we reproduce several experimental data sets on γ-H2AX foci remaining in different types of cells including those defective in NHEJ, HR, or SSA functions. The results produced confirm the hypothesis suggesting existence of at least two alternative Ku-independent end-joining pathways.


Assuntos
Quebras de DNA de Cadeia Dupla/efeitos da radiação , Reparo do DNA/efeitos da radiação , Raios gama , Modelos Biológicos , Animais , Antígenos Nucleares/metabolismo , Proteína BRCA2/metabolismo , Reparo do DNA por Junção de Extremidades , Proteína Quinase Ativada por DNA/metabolismo , Proteínas de Ligação a DNA/metabolismo , Fibroblastos/metabolismo , Fibroblastos/efeitos da radiação , Histonas/metabolismo , Recombinação Homóloga/genética , Humanos , Cinética , Autoantígeno Ku , Mamíferos/metabolismo , Rad51 Recombinase/metabolismo , Proteína de Replicação A/metabolismo , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...