Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cells ; 11(23)2022 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-36496984

RESUMO

Nucleotide excision repair (NER) is a central DNA repair pathway responsible for removing a wide variety of DNA-distorting lesions from the genome. The highly choreographed cascade of core NER reactions requires more than 30 polypeptides. The xeroderma pigmentosum group A (XPA) protein plays an essential role in the NER process. XPA interacts with almost all NER participants and organizes the correct NER repair complex. In the absence of XPA's scaffolding function, no repair process occurs. In this review, we briefly summarize our current knowledge about the XPA protein structure and analyze the formation of contact with its protein partners during NER complex assembling. We focus on different ways of regulation of the XPA protein's activity and expression and pay special attention to the network of post-translational modifications. We also discuss the data that is not in line with the currently accepted hypothesis about the functioning of the XPA protein.


Assuntos
Reparo do DNA , Proteína de Xeroderma Pigmentoso Grupo A , Humanos , Proteína de Xeroderma Pigmentoso Grupo A/genética , Proteína de Xeroderma Pigmentoso Grupo A/química , Proteína de Xeroderma Pigmentoso Grupo A/metabolismo , Núcleo Celular/metabolismo , Processamento de Proteína Pós-Traducional
2.
PLoS One ; 13(1): e0190782, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29320546

RESUMO

Replication protein A (RPA) and the xeroderma pigmentosum group A (XPA) protein are indispensable for both pathways of nucleotide excision repair (NER). Here we analyze the interaction of RPA and XPA with DNA containing a flap and different size gaps that imitate intermediates of the late NER stages. Using gel mobility shift assays, we found that RPA affinity for DNA decreased when DNA contained both extended gap and similar sized flap in comparison with gapped-DNA structure. Moreover, crosslinking experiments with the flap-gap DNA revealed that RPA interacts mainly with the ssDNA platform within the long gap and contacts flap in DNA with a short gap. XPA exhibits higher affinity for bubble-DNA structures than to flap-gap-containing DNA. Protein titration analysis showed that formation of the RPA-XPA-DNA ternary complex depends on the protein concentration ratio and these proteins can function as independent players or in tandem. Using fluorescently-labelled RPA, direct interaction of this protein with XPA was detected and characterized quantitatively. The data obtained allow us to suggest that XPA can be involved in the post-incision NER stages via its interaction with RPA.


Assuntos
Reparo do DNA , DNA/metabolismo , Proteína de Replicação A/metabolismo , Proteína de Xeroderma Pigmentoso Grupo A/metabolismo , DNA/química , Ensaio de Desvio de Mobilidade Eletroforética , Humanos , Marcadores de Fotoafinidade , Ligação Proteica , Proteínas Recombinantes/metabolismo
3.
J Mol Recognit ; 26(12): 653-61, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24277610

RESUMO

The human XPC-RAD23B complex and its yeast ortholog, Rad4-Rad23, are the primary initiators of global genome nucleotide excision repair. In this study, two types of DNA binding assays were used for the detailed analysis of interaction of these proteins with damaged DNA. An electrophoretic mobility shift assay revealed that human and yeast orthologs behave similarly in DNA binding. Quantitative analyses of XPC/Rad4 binding to the model DNA structures were performed using fluorescent depolarization measurements. The XPC-RAD23B and the Rad4-Rad23 proteins bind to the damaged 15 nt bubble-DNA structure mimicking in size the "transcription bubble" DNA intermediate with the highest affinity (KD values ~10(-10) M or less) that is reduced in the following order: damaged bubble > undamaged bubble > damaged duplex > undamaged duplex. The affinity of XPC/Rad4 for various DNAs was shown to correlate with DNA bending angle. The results obtained show clearly that more deviation from regular DNA structure leads to higher XPC/Rad4 affinity.


Assuntos
Dano ao DNA/genética , Enzimas Reparadoras do DNA/química , Proteínas de Ligação a DNA/química , DNA/química , Ensaio de Desvio de Mobilidade Eletroforética , Polarização de Fluorescência , Humanos , Ligação Proteica
4.
J Biol Chem ; 288(15): 10936-47, 2013 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-23443653

RESUMO

The human XPC-RAD23B complex and its yeast ortholog, Rad4-Rad23, are the primary initiators of global genome nucleotide excision repair. The interaction of these proteins with damaged DNA was analyzed using model DNA duplexes containing a single fluorescein-substituted dUMP analog as a lesion. An electrophoretic mobility shift assay revealed similarity between human and yeast proteins in DNA binding. Quantitative analyses of XPC/Rad4 binding to the model DNA structures were performed by fluorescent depolarization measurements. XPC-RAD23B and Rad4-Rad23 proteins demonstrate approximately equal binding affinity to the damaged DNA duplex (K(D) ∼ (0.5 ± 0.1) and (0.6 ± 0.3) nM, respectively). Using photoreactive DNA containing 5-iodo-dUMP in defined positions, XPC/Rad4 location on damaged DNA was shown. Under conditions of equimolar binding to DNA both proteins exhibited the highest level of cross-links to 5I-dUMP located exactly opposite the damaged nucleotide. The positioning of the XPC and Rad4 proteins on damaged DNA by photocross-linking footprinting is consistent with x-ray analysis of the Rad4-DNA crystal complex. The identity of the XPC and Rad4 location illustrates the common principles of structure organization of DNA damage-scanning proteins from different Eukarya organisms.


Assuntos
Dano ao DNA/fisiologia , Enzimas Reparadoras do DNA/metabolismo , Reparo do DNA/fisiologia , Proteínas de Ligação a DNA/metabolismo , Complexos Multiproteicos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Enzimas Reparadoras do DNA/química , Enzimas Reparadoras do DNA/genética , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Humanos , Complexos Multiproteicos/química , Complexos Multiproteicos/genética , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética
5.
Nucleic Acids Res ; 38(22): 8083-94, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20693538

RESUMO

The interaction of xeroderma pigmentosum group A protein (XPA) and replication protein A (RPA) with damaged DNA in nucleotide excision repair (NER) was studied using model dsDNA and bubble-DNA structure with 5-{3-[6-(carboxyamido-fluoresceinyl)amidocapromoyl]allyl}-dUMP lesions in one strand and containing photoreactive 5-iodo-dUMP residues in defined positions. Interactions of XPA and RPA with damaged and undamaged DNA strands were investigated by DNA-protein photocrosslinking and gel shift analysis. XPA showed two maximums of crosslinking intensities located on the 5'-side from a lesion. RPA mainly localized on undamaged strand of damaged DNA duplex and damaged bubble-DNA structure. These results presented for the first time the direct evidence for the localization of XPA in the 5'-side of the lesion and suggested the key role of XPA orientation in conjunction with RPA binding to undamaged strand for the positioning of the NER preincision complex. The findings supported the mechanism of loading of the heterodimer consisting of excision repair cross-complementing group 1 and xeroderma pigmentosum group F proteins by XPA on the 5'-side from the lesion before damaged strand incision. Importantly, the proper orientation of XPA and RPA in the stage of preincision was achieved in the absence of TFIIH and XPG.


Assuntos
Dano ao DNA , Reparo do DNA , Proteína de Replicação A/metabolismo , Proteína de Xeroderma Pigmentoso Grupo A/metabolismo , DNA/química , DNA/metabolismo , Pegada de DNA , Desoxirribonucleases/metabolismo , Proteína de Replicação A/análise , Proteína de Xeroderma Pigmentoso Grupo A/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...