Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Brain ; 12(1): 112, 2019 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-31856878

RESUMO

AIM: An impaired biological response to insulin in the brain, known as central insulin resistance, was identified during stroke and traumatic brain injury, for which glutamate excitotoxicity is a common pathogenic factor. The exact molecular link between excitotoxicity and central insulin resistance remains unclear. To explore this issue, the present study aimed to investigate the effects of glutamate-evoked increases in intracellular free Ca2+ concentrations [Ca2+]i and mitochondrial depolarisations, two key factors associated with excitotoxicity, on the insulin-induced activation of the insulin receptor (IR) and components of the Akt/ mammalian target of rapamycin (mTOR) pathway in primary cultures of rat cortical neurons. METHODS: Changes in [Ca2+]i and mitochondrial inner membrane potentials (ΔΨm) were monitored in rat cultured cortical neurons, using the fluorescent indicators Fura-FF and Rhodamine 123, respectively. The levels of active, phosphorylated signalling molecules associated with the IR/Akt/mTOR pathway were measured with the multiplex fluorescent immunoassay. RESULTS: When significant mitochondrial depolarisations occurred due to glutamate-evoked massive influxes of Ca2+ into the cells, insulin induced 48% less activation of the IR (assessed by IR tyrosine phosphorylation, pY1150/1151), 72% less activation of Akt (assessed by Akt serine phosphorylation, pS473), 44% less activation of mTOR (assessed by mTOR pS2448), and 38% less inhibition of glycogen synthase kinase ß (GSK3ß) (assessed by GSK3ß pS9) compared with respective controls. These results suggested that excitotoxic glutamate inhibits signalling via the IR/Akt/mTOR pathway at multiple levels, including the IR, resulting in the development of acute neuronal insulin resistance within minutes, as an early pathological event associated with excitotoxicity.


Assuntos
Ácido Glutâmico/toxicidade , Resistência à Insulina , Neurônios/patologia , Neurotoxinas/toxicidade , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptor de Insulina/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo , Animais , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Ratos
2.
Front Neurosci ; 13: 1027, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31611766

RESUMO

Glutamate excitotoxicity is implicated in the pathogenesis of numerous diseases, such as stroke, traumatic brain injury, and Alzheimer's disease, for which insulin resistance is a concomitant condition, and intranasal insulin treatment is believed to be a promising therapy. Excitotoxicity is initiated primarily by the sustained stimulation of ionotropic glutamate receptors and leads to a rise in intracellular Ca2+ ([Ca2+] i ), followed by a cascade of intracellular events, such as delayed calcium deregulation (DCD), mitochondrial depolarization, adenosine triphosphate (ATP) depletion that collectively end in cell death. Therefore, cross-talk between insulin and glutamate signaling in excitotoxicity is of particular interest for research. In the present study, we investigated the effects of short-term insulin exposure on the dynamics of [Ca2+] i and mitochondrial potential in cultured rat cortical neurons during glutamate excitotoxicity. We found that insulin ameliorated the glutamate-evoked rise of [Ca2+] i and prevented the onset of DCD, the postulated point-of-no-return in excitotoxicity. Additionally, insulin significantly improved the glutamate-induced drop in mitochondrial potential, ATP depletion, and depletion of brain-derived neurotrophic factor (BDNF), which is a critical neuroprotector in excitotoxicity. Also, insulin improved oxygen consumption rates, maximal respiration, and spare respiratory capacity in neurons exposed to glutamate, as well as the viability of cells in the MTT assay. In conclusion, the short-term insulin exposure in our experiments was evidently a protective treatment against excitotoxicity, in a sharp contrast to chronic insulin exposure causal to neuronal insulin resistance, the adverse factor in excitotoxicity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...