Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 15(15)2023 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-37571181

RESUMO

Polyacrylonitrile (PAN) nanofibers have extensive applications as filters in various fields, including air and water filtration, biofluid purification, and the removal of toxic compounds and hazardous pollutants from contaminated water. This research focuses on investigating the impacts of annealing on the mechanical and thermal characteristics of oriented PAN nanofibers produced through the electrospinning of a PAN solution. The nanofiber mats were subjected to annealing temperatures ranging from 70 °C to 350 °C and characterized using a tensile test machine, thermogravimetry, differential scanning calorimetry, and scanning electron microscopy (SEM). The study aimed to examine the tensile strength in the transverse and longitudinal directions, Young's modulus, and glass transition temperatures of PAN nanofiber mats. The results indicate that, upon annealing, the diameter of the nanofibers decreased by approximately 20%, while the tensile strength increased in the longitudinal and transverse directions by 32% and 23%, respectively. Furthermore, the annealing temperature influenced the glass transition temperature of the nanofiber mats, which exhibited a 6% decrease at 280 °C, while the degradation temperature showed a slight increase of 3.5% at 280 °C. The findings contribute to a better understanding of the effects of annealing on PAN nanofiber mats, facilitating their potential for various filtration applications.

2.
Materials (Basel) ; 12(5)2019 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-30857171

RESUMO

The current study presents research into the effect of graphene oxide (GO) with a carbon to oxygen ratio of 4:1 on the fluidity, hydration, microstructure, mechanical and physical properties of Portland cement pastes and mortars. The amounts of GO investigated were 0.02%, 0.04%, and 0.06% by weight of cement, while for mortars, an extra composition with 0.1% was also prepared. According to the results, the fluidity of cement paste and mortar increased and the hydration process was slightly retarded with the addition of GO. Despite this, improvements in compressive and flexural strength were established in the mortars containing GO. The maximum effects (~22% and ~6%, respectively) were obtained with the addition of 0.06% GO. The calculation of estimated strength proportional to samples of equal density showed that for mortars cured for 7 days the gain in strength was directly related to the gain in density. For mortar samples cured for 28 days, the estimated strength was found to be significantly higher than that of the reference sample, indicating that besides density there are other factors determining the improvement in strength of mortars modified with GO. The possible structure strengthening mechanisms are discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...