Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 116
Filtrar
1.
Curr Issues Mol Biol ; 46(6): 5337-5351, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38920991

RESUMO

Sexual maturation of Atlantic salmon males is marked by dramatic endocrine changes and rapid growth of the testes, resulting in an increase in the gonad somatic index (GSI). We examined the association of gonadal growth with serum sex steroids, as well as pituitary and testicular gene expression levels, which were assessed with a DNA oligonucleotide microarray. The testes transcriptome was stable in males with a GSI < 0.08% despite the large difference between the smallest and the largest gonads. Fish with a GSI ≥ 0.23% had 7-17 times higher serum levels of five male steroids and a 2-fold increase in progesterone, without a change in cortisol and related steroids. The pituitary transcriptome showed an upregulation of the hormone-coding genes that control reproduction and behavior, and structural rearrangement was indicated by the genes involved in synaptic transmission and the differentiation of neurons. The observed changes in the abundance of testicular transcripts were caused by the regulation of transcription and/or disproportional growth, with a greater increase in the germinative compartment. As these factors could not be separated, the transcriptome results are presented as higher or lower specific activities (HSA and LSA). LSA was observed in 4268 genes, including many genes involved in various immune responses and developmental processes. LSA also included genes with roles in female reproduction, germinal cell maintenance and gonad development, responses to endocrine and neural regulation, and the biosynthesis of sex steroids. Two functional groups prevailed among HSA: structure and activity of the cilia (95 genes) and meiosis (34 genes). The puberty of A. salmon testis is marked by the predominance of spermatogenesis, which displaces other processes; masculinization; and the weakening of external regulation. Results confirmed the known roles of many genes involved in reproduction and pointed to uncharacterized genes that deserve attention as possible regulators of sexual maturation.

2.
Fish Shellfish Immunol ; 146: 109422, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38307300

RESUMO

The intestine is a barrier organ that plays an important role in the immune system of Atlantic salmon. The immune functions are distributed among the diffuse gut lymphoid tissue containing diverse immune cells, and other cell types. Comparison of intestinal transcriptomes with those of other organs and tissues offers an opportunity to elucidate the specific roles of the intestine and its relationship with other parts of the body. In this work, a meta-analysis was performed on a large volume of data obtained using a genome-wide DNA oligonucleotide microarray. The intestine ranks third by the expression level of immune genes after the spleen and head kidney. The activity of antigen presentation and innate antiviral immunity is higher in the intestine than in any other tissue. By comparing transcriptome profiles, intestine shows the greatest similarity with the gill, head kidney, spleen, epidermis, and olfactory rosette (descending order), which emphasizes the integrity of the peripheral mucosal system and its strong connections with the major lymphoid organs. T cells-specific genes dominate among the genes co-expressed in these tissues. The transcription signature of CD8+ (86 genes, r > 0.9) includes a master gene of immune tolerance foxp3 and other negative regulators. Different segments of the intestine were compared in a separate experiment, in which expression gradients along the intestine were found across several functional groups of genes. The expression of luminal and intracellular (lysosome) proteases is markedly higher in pyloric caeca and distal intestine respectively. Steroid metabolism and cytochromes P450 are highly expressed in pyloric caeca and mid intestine while the distal intestine harbors genes related to vitamin and iron metabolism. The expression of genes for antigen presenting proteins and immunoglobulins shows a gradual increase towards the distal intestine.


Assuntos
Salmo salar , Animais , Salmo salar/genética , Transcriptoma , Análise de Sequência com Séries de Oligonucleotídeos , Baço/metabolismo , Intestinos
3.
Gen Comp Endocrinol ; 348: 114434, 2024 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-38142842

RESUMO

Atlantic salmon (Salmo salar) broodstock recruits are normally fed a specialized diet with a higher content of essential nutrients for a limited time period prior to fasting and transfer to freshwater. Typically, this period lasts for about six months, but may vary among producers. Reduced use of marine ingredients in commercial salmon diets during the last decades has affected the content of essential nutrients, such as n-3 long chained polyunsaturated fatty acids (LC-PUFA), minerals and vitamins. Furthermore, to minimize the risk of losses and implement new breeding achievements faster, breeding companies have shortened the production cycle of broodstock from 4 to 3 years, which may affect the number of fish that are large enough to mature. In the present study, we have extended the broodstock feeding period from 6 to 15 months prior to the freshwater transfer giving a higher content of n-3 LC-PUFA (higher inclusion of marine oils) from February to December (Phase 1), and thereafter a diet with a higher energy content to ensure growth towards the spring and maturation (Phase 2). Four sea cages with approximately 80.000 salmon postsmolt, two sea cages with males and two with females, were given a control diet and an experimental diet. Samples were taken in Phase 1 at start (1.7 kg), mid (3.4 kg) and end Phase 1/start of Phase 2 (8.3 kg), and end of Phase 2 (13.4 kg). The fish were thereafter fasted, and selected fish transferred to landbased freshwater tanks where light and temperature were used to manipulate the spawning time of the fish in two groups (early or late). Due to disease in the facility, measures of egg quality and hatching were only obtained from the early group. During the trial and spawning period, biometrical measurements were recorded, and samples of liver, gonad, fillet and red blood cells (RBC) were collected for fatty acid composition and blood plasma for analysis of lipid and health-related parameters. Samples were also collected for gonadal transcriptomic analysis by microarray and qPCR (end Phase 2) and plasma steroids (end Phase 2, mid maturation and spawning). Males fed the test diet had a larger body size compared to the control group at the end of Phase 2, while no differences were observed between dietary groups for the females. Total mortality in the trial was lower in the test group compared to the control, losses were caused mainly by sea lice treatments, loser fish or cardiomyopathy syndrome (CMS). The dietary LC-PUFA levels in the test diet were reflected in the tissues particularly during Phase 1, but only different in the fillet samples and eggs at the end of Phase 2 and at spawning. Plasma sex steroids content increased at mid maturation and showed lower levels of androgens and estrogens in females fed the test diet compared to the control. At the end of Phase 2, transcriptional analysis showed upregulation of steroidogenic enzymes, although not reflected in changes in plasma steroids in Phase 2, indicating changes to come during maturation. The differences in LC-PUFA content in tissues and plasma steroids did not appear to affect fecundity, sperm quality, egg survival or hatching rate, but the test group had larger eggs compared to the control in the early spawner-group. Prolonged feeding of n-3 LC-PUFA to pre-puberty Atlantic salmon broodstock appears to be important for higher survival in challenging sea cage environments and has an effect on sex steroid production that, together with high energy diet during early maturation, cause the test group to produce larger eggs.


Assuntos
Ácidos Graxos Ômega-3 , Salmo salar , Animais , Feminino , Masculino , Maturidade Sexual , Sêmen , Ácidos Graxos , Dieta/veterinária , Esteroides , Ração Animal/análise
4.
Cells ; 12(23)2023 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-38067188

RESUMO

Adaptation to environmental variation caused by global climate change is a significant aspect of fisheries management and ecology. A reduction in ocean salinity is visible in near-shore areas, especially in the Baltic Sea, where it is affecting the Atlantic cod population. Cod is one of the most significant teleost species, with high ecological and economical value worldwide. The population of cod in the Baltic Sea has been traditionally divided into two subpopulations (western and eastern) existing in higher- and lower-salinity waters, respectively. In recent decades, both Baltic cod subpopulations have declined massively. One of the reasons for the poor condition of cod in the Baltic Sea is environmental factors, including salinity. Thus, in this study, an oligonucleotide microarray was applied to explore differences between Baltic cod subpopulations in response to salinity fluctuations. For this purpose, an exposure experiment was conducted consisting of salinity elevation and reduction, and gene expression was measured in gill tissue. We found 400 differentially expressed genes (DEGs) involved in the immune response, metabolism, programmed cell death, cytoskeleton, and extracellular matrix that showed a subpopulation-dependent pattern. These findings indicate that osmoregulation in Baltic cod is a complex process, and that western and eastern Baltic cod subpopulations respond differently to salinity changes.


Assuntos
Gadus morhua , Animais , Gadus morhua/genética , Gadus morhua/metabolismo , Salinidade , Transcriptoma/genética , Países Bálticos
5.
Sci Immunol ; 8(90): eadf1627, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37910630

RESUMO

Germinal centers (GCs) or analogous secondary lymphoid microstructures (SLMs) are thought to have evolved in endothermic species. However, living representatives of their ectothermic ancestors can mount potent secondary antibody responses upon infection or immunization, despite the apparent lack of SLMs in these cold-blooded vertebrates. How and where adaptive immune responses are induced in ectothermic species in the absence of GCs or analogous SLMs remain poorly understood. Here, we infected a teleost fish (trout) with the parasite Ichthyophthirius multifiliis (Ich) and identified the formation of large aggregates of highly proliferating IgM+ B cells and CD4+ T cells, contiguous to splenic melanomacrophage centers (MMCs). Most of these MMC-associated lymphoid aggregates (M-LAs) contained numerous antigen (Ag)-specific B cells. Analysis of the IgM heavy chain CDR3 repertoire of microdissected splenic M-LAs and non-M-LA areas revealed that the most frequent B cell clones induced after Ich infection were highly shared only within the M-LAs of infected animals. These M-LAs represented highly polyclonal SLMs in which Ag-specific B cell clonal expansion occurred. M-LA-associated B cells expressed high levels of activation-induced cytidine deaminase and underwent significant apoptosis, and somatic hypermutation of Igµ genes occurred prevalently in these cells. Our findings demonstrate that ectotherms evolved organized SLMs with GC-like roles. Moreover, our results also point to primordially conserved mechanisms by which M-LAs and mammalian polyclonal GCs develop and function.


Assuntos
Linfócitos B , Centro Germinativo , Animais , Imunoglobulina M , Antígenos , Vertebrados , Mamíferos
6.
G3 (Bethesda) ; 13(11)2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37724757

RESUMO

In this study, we present the first spatial transcriptomic atlas of Atlantic salmon skin using the Visium Spatial Gene Expression protocol. We utilized frozen skin tissue from 4 distinct sites, namely the operculum, pectoral and caudal fins, and scaly skin at the flank of the fish close to the lateral line, obtained from 2 Atlantic salmon (150 g). High-quality frozen tissue sections were obtained by embedding tissue in optimal cutting temperature media prior to freezing and sectioning. Further, we generated libraries and spatial transcriptomic maps, achieving a minimum of 80 million reads per sample with mapping efficiencies ranging from 79.3 to 89.4%. Our analysis revealed the detection of over 80,000 transcripts and nearly 30,000 genes in each sample. Among the tissue types observed in the skin, the epithelial tissues exhibited the highest number of transcripts (unique molecular identifier counts), followed by muscle tissue, loose and fibrous connective tissue, and bone. Notably, the widest nodes in the transcriptome network were shared among the epithelial clusters, while dermal tissues showed less consistency, which is likely attributable to the presence of multiple cell types at different body locations. Additionally, we identified collagen type 1 as the most prominent gene family in the skin, while keratins were found to be abundant in the epithelial tissue. Furthermore, we successfully identified gene markers specific to epithelial tissue, bone, and mesenchyme. To validate their expression patterns, we conducted a meta-analysis of the microarray database, which confirmed high expression levels of these markers in mucosal organs, skin, gills, and the olfactory rosette.


Assuntos
Doenças dos Peixes , Salmo salar , Animais , Transcriptoma , Salmo salar/genética , Perfilação da Expressão Gênica , Pele/metabolismo , Epitélio , Doenças dos Peixes/genética
7.
Front Physiol ; 14: 1214987, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37664428

RESUMO

The aquafeed ingredient inventory is ever changing, from marine to plant based, and recently evolving to incorporate increasing amounts of low trophic, side stream and circular economy based raw materials, each one contributing with variable amounts and qualities of macro- and micronutrients. Meeting the micronutrient requirement of farmed fish for healthy and efficient growth under normal and challenging conditions is of paramount importance. In this study we run a trial based on a 2 × 4 factorial design with three replications for each dietary treatment, where Atlantic salmon smolt were fed one of 8 experimental diets supplemented with either organic or inorganic mineral premixes (copper, iron, manganese, selenium, and zinc) at four dietary inclusion levels. We saw a trend for higher growth rate in the organic mineral groups irrespective of the dietary mineral levels. Mineral digestibility was negatively correlated with increasing mineral supplementation levels for all tested minerals but Se which increased with the increasing supplementation in the inorganic and up to the 2nd inclusion level in the organic mineral groups. Increasing mineral supplementation affected retention efficiency of Zn, Mn, Cu and Fe while mineral source affected only the retention of Se which was higher in the organic mineral groups. Moreover, fish obtained higher EPA and DHA in their body and increased slaughter yield in the organic as compared to the inorganic mineral groups and corroborated that trace mineral inclusion levels play a key role on salmon fillet's technical quality. More effects from different origin and dietary inclusion levels of trace minerals were seen on fillet yield, fillet technical and nutritional quality, bone strength, skin morphology, organ mineralization and midgut transcriptome.

8.
Fish Shellfish Immunol ; 139: 108858, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37302676

RESUMO

Focal dark spots (DS) in farmed Atlantic salmon fillets contain a significant number of B cells as revealed by the high abundance of immunoglobulin (Ig) transcripts in transcriptome data. The immune response in DS remains unknown while they represent a major problem in commercial aquaculture. Here, we characterized the diversity and clonal composition of B cells in DS. Sixteen gene markers of immune cells and antigen presentation were analyzed with RT-qPCR. All genes expression showed a positive correlation with DS area and intensity. The flatter the DS, the higher the expression of cd28, csfr, ctla, igt, and sigm, the lower expression of cd83 and btla, and the larger the cumulative frequency within DS. The expression of most of the analyzed immune genes, including three Ig types and markers of B cells was lower in DS than in the lymphatic organs, head kidney and spleen, but significantly higher compared to skeletal muscle. High levels of ctla4 and cd28 in DS might indicate the recruitment of T cells. Sequencing of IgM repertoire (Ig-seq) assessed migration of B cells by co-occurrence of identical CDR3 sequences in different tissues. The combination of gene expression and Ig-seq revealed the presence of several stages of B cell differentiation in DS. B cells at the earliest stage, with high ratio of membrane to secretory IgM (migm and sigm), showed minor Ig repertoire overlap with other tissues. Further differentiation stage (increased sigm to migm ratio and high expression of pax5 and cd79) was associated with active movement of B cells from DS towards lymphatic organs and visceral fat. Traffic and expression of immune genes decreased at later stages. These B cells could be involved in a response directed against viruses, pathogenic or opportunistic bacteria in DS. Seven of eight fish were positive for salmon alphavirus, and levels were higher in DS than in unstained muscle. PCR with universal primers to the 16S rRNA gene did not detect bacteria in DS. Although the evolution of DS most likely implies local exposure to antigens, neither this nor previous studies have found a necessary association between DS and pathogens or self-antigens.


Assuntos
Doenças dos Peixes , Salmo salar , Animais , Salmo salar/genética , Antígenos CD28 , RNA Ribossômico 16S , Imunoglobulina M , Diferenciação Celular , Músculo Esquelético
9.
Int J Mol Sci ; 24(12)2023 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-37373473

RESUMO

Omnipresent microplastics (MPs) in marine ecosystems are ingested at all trophic levels and may be a vector for the transfer of persistent organic pollutants (POPs) through the food web. We fed rotifers polyethylene MPs (1-4 µm) spiked with seven congeners of polychlorinated biphenyls (PCBs) and two congeners of polybrominated diphenyl ethers (PBDEs). In turn, these rotifers were fed to cod larvae from 2-30 days post-hatching (dph), while the control groups were fed rotifers without MPs. After 30 dph, all the groups were fed the same feed without MPs. Whole-body larvae were sampled at 30 and 60 dph, and four months later the skin of 10 g juveniles was sampled. The PCBs and PBDEs concentrations were significantly higher in MP larvae compared to the control larvae at 30 dph, but the significance dissipated at 60 dph. Expression of stress-related genes in cod larvae at 30 and 60 dph showed inconclusive minor random effects. The skin of MP juveniles showed disrupted epithelial integrity, fewer club cells and downregulation of a suite of genes involved in immunity, metabolism and the development of skin. Our study showed that POPs were transferred through the food web and accumulated in the larvae, but that the level of pollutants decreased once the exposure was ceased, possibly related to growth dilution. Considering the transcriptomic and histological findings, POPs spiked to MPs and/or MPs themselves may have long-term effects in the skin barrier defense system, immune response and epithelium integrity, which may potentially reduce the robustness and overall fitness of the fish.


Assuntos
Poluentes Ambientais , Gadus morhua , Bifenilos Policlorados , Rotíferos , Poluentes Químicos da Água , Animais , Bifenilos Policlorados/toxicidade , Gadus morhua/metabolismo , Éteres Difenil Halogenados/toxicidade , Plásticos/metabolismo , Larva/metabolismo , Microplásticos/toxicidade , Ecossistema , Poluentes Ambientais/metabolismo , Poluentes Químicos da Água/metabolismo
10.
Inorg Chem ; 62(26): 10369-10381, 2023 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-37348001

RESUMO

Doping of nano- and microparticles of oxides with rare earth elements (REEs) is used to fine-tune their structural, optical, and electrochemical properties. On the way to establish the structure-property relationship, we dope tantalum oxide (Ta2O5) particles with REEs to study their effect on the oxide structure and luminescence. Ta2O5 is highly perspective in medicine, catalysis, and optics, but its crystal structure is insufficiently studied. Two synthesis approaches (sol-gel and solvothermal) were used to obtain powders with different textures. Experimental and theoretical studies of amorphous and crystallized tantalum oxide NPs by means of X-ray powder diffraction, Rietveld analysis, EXAFS/XANES spectroscopy, and density functional theory calculations were performed. All samples (doped and undoped) crystallized in orthorhombic phase with no admixtures. It was demonstrated that Ta2O5 is a promising wide-spectrum luminescent material: by combining REEs, both Stokes and anti-Stokes luminescence in the visible region were obtained. By means of optical absorption spectroscopy, it was shown that the prepared samples could be classified as wide band gap semiconductors.

11.
Aquac Nutr ; 2023: 5422035, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36860972

RESUMO

Steatosis and inflammation have been common gut symptoms in Atlantic salmon fed plant rich diets. Choline has recently been identified as essential for salmon in seawater, and ß-glucan and nucleotides are frequently used to prevent inflammation. The study is aimed at documenting whether increased fishmeal (FM) levels (8 levels from 0 to 40%) and supplementation (Suppl) with a mixture of choline (3.0 g/kg), ß-glucan (0.5 g/kg), and nucleotides (0.5 g/kg) might reduce the symptoms. Salmon (186 g) were fed for 62 days in 16 saltwater tanks before samples were taken from 12 fish per tank for observation of biochemical, molecular, metabolome, and microbiome indicators of function and health. Steatosis but no inflammation was observed. Lipid digestibility increased and steatosis decreased with increasing FM levels and supplementation, seemingly related to choline level. Blood metabolites confirmed this picture. Genes in intestinal tissue affected by FM levels are mainly involved in metabolic and structural functions. Only a few are immune genes. The supplement reduced these FM effects. In gut digesta, increasing FM levels increased microbial richness and diversity, and changed the composition, but only for unsupplemented diets. An average choline requirement of 3.5 g/kg was indicated for Atlantic salmon at the present life stage and under the present condition.

12.
Fish Shellfish Immunol ; 134: 108618, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36801242

RESUMO

Functional feed ingredients are frequently used in feeds for Atlantic salmon, often claimed to improve immune functions in the intestine and reduce severity of gut inflammation. However, documentation of such effects is, in most cases, only indicative. In the present study effects of two packages of functional feed ingredients commonly used in salmon production, were evaluated employing two inflammation models. One model employed soybean meal (SBM) as inducer of a severe inflammation, the other a mixture of corn gluten and pea meal (CoPea) inducing mild inflammation. The first model was used to evaluate effects of two packages of functional ingredients: P1 containing butyrate and arginine, and P2 containing ß-glucan, butyrate, and nucleotides. In the second model only the P2 package was tested. A high marine diet was included in the study as a control (Contr). The six diets were fed to salmon (average weight of 177g) in saltwater tanks (57 fish per tank), in triplicate, for 69 days (754 ddg). Feed intake was recorded. The growth rate of the fish was high, highest for the Contr (TGC: 3.9), lowest for SBM fed fish (TGC: 3.4). Fish fed the SBM diet showed severe symptoms of inflammation in the distal intestine as indicated by histological, biochemical, molecular, and physiological biomarkers. The number of differently expressed genes (DEG) between the SBM and Contr fed fish was 849 and comprised genes indicating alteration in immune functions, cellular and oxidative stress, and nutrient digestion, and transport functions. Neither P1 nor P2 altered the histological and functional symptoms of inflammation in the SBM fed fish importantly. Inclusion of P1 altered expression of 81 genes, inclusion of P2 altered 121 genes. Fish fed the CoPea diet showed minor signs of inflammation. Supplementation with P2 did not change these signs. Regarding composition of the microbiota in digesta from the distal intestine, clear differences regarding beta-diversity and taxonomy between Contr, SBM, and CoPea fed fish were observed. In the mucosa the microbiota differences were less clear. The two packages of functional ingredients altered microbiota composition of fish fed the SBM and the CoPea diet towards that of fish fed the Contr diet.


Assuntos
Microbiota , Salmo salar , Animais , Intestinos , Dieta , Inflamação/patologia , Ração Animal/análise , Glycine max
13.
Rev Aquac ; 15(2): 491-535, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38504717

RESUMO

Disease and parasitism cause major welfare, environmental and economic concerns for global aquaculture. In this review, we examine the status and potential of technologies that exploit genetic variation in host resistance to tackle this problem. We argue that there is an urgent need to improve understanding of the genetic mechanisms involved, leading to the development of tools that can be applied to boost host resistance and reduce the disease burden. We draw on two pressing global disease problems as case studies-sea lice infestations in salmonids and white spot syndrome in shrimp. We review how the latest genetic technologies can be capitalised upon to determine the mechanisms underlying inter- and intra-species variation in pathogen/parasite resistance, and how the derived knowledge could be applied to boost disease resistance using selective breeding, gene editing and/or with targeted feed treatments and vaccines. Gene editing brings novel opportunities, but also implementation and dissemination challenges, and necessitates new protocols to integrate the technology into aquaculture breeding programmes. There is also an ongoing need to minimise risks of disease agents evolving to overcome genetic improvements to host resistance, and insights from epidemiological and evolutionary models of pathogen infestation in wild and cultured host populations are explored. Ethical issues around the different approaches for achieving genetic resistance are discussed. Application of genetic technologies and approaches has potential to improve fundamental knowledge of mechanisms affecting genetic resistance and provide effective pathways for implementation that could lead to more resistant aquaculture stocks, transforming global aquaculture.

14.
Int J Mol Sci ; 23(19)2022 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-36232504

RESUMO

Moritella viscosa is a bacterial pathogen causing winter-ulcer disease in Atlantic salmon. The lesions on affected fish lead to increased mortality, decreased fish welfare, and inferior meat quality in farmed salmon. MicroRNAs (miRNAs) are small non-coding RNAs involved in post-transcriptional regulation by guiding the miRNA-induced silencing complex to specific mRNA transcripts (target genes). The goal of this study was to identify miRNAs responding to Moritella viscosa in salmon by investigating miRNA expression in the head-kidney and the muscle/skin from lesion sites caused by the pathogen. Protein coding gene expression was investigated by microarray analysis in the same materials. Seventeen differentially expressed guide-miRNAs (gDE-miRNAs) were identified in the head-kidney, and thirty-nine in lesion sites, while the microarray analysis reproduced the differential expression signature of several thousand genes known as infection-responsive. In silico target prediction and enrichment analysis suggested that the gDE-miRNAs were predicted to target genes involved in immune responses, hemostasis, angiogenesis, stress responses, metabolism, cell growth, and apoptosis. The majority of the conserved gDE-miRNAs (e.g., miR-125, miR-132, miR-146, miR-152, miR-155, miR-223 and miR-2188) are known as infection-responsive in other vertebrates. Collectively, the findings indicate that gDE-miRNAs are important post-transcriptional gene regulators of the host response to bacterial infection.


Assuntos
MicroRNAs , Moritella , Salmo salar , Animais , Rim Cefálico/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Mensageiro , Salmo salar/genética , Salmo salar/metabolismo
15.
Front Immunol ; 13: 948897, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36090977

RESUMO

Treatment development for parasitic infestation is often limited to disease resolution as an endpoint response, and physiological and immunological consequences are not thoroughly considered. Here, we report the impact of exposing Atlantic salmon affected with amoebic gill disease (AGD) to peracetic acid (PAA), an oxidative chemotherapeutic. AGD-affected fish were treated with PAA either by exposing them to 5 ppm for 30 min or 10 ppm for 15 min. Unexposed fish from both infected and uninfected groups were also included. Samples for molecular, biochemical, and histological evaluations were collected at 24 h, 2 weeks, and 4 weeks post-treatment. Behavioral changes were observed during PAA exposure, and post-treatment mortality was higher in the infected and PAA treated groups, especially in 10 ppm for 15 min. Plasma indicators showed that liver health was affected by AGD, though PAA treatment did not exacerbate the infection-related changes. Transcriptome profiling in the gills showed significant changes, triggered by AGD and PAA treatments, and the effects of PAA were more notable 24 h after treatment. Genes related to immune pathways of B- and T- cells and protein synthesis and metabolism were downregulated, where the magnitude was more remarkable in 10 ppm for 15 min group. Even though treatment did not fully resolve the pathologies associated with AGD, 5 ppm for 30 min group showed lower parasite load at 4 weeks post-treatment. Mucous cell parameters (i.e., size and density) increased within 24 h post-treatment and were significantly higher at termination, especially in AGD-affected fish, with some treatment effects influenced by the dose of PAA. Infection and treatments resulted in oxidative stress-in the early phase in the gill mucosa, while systemic reactive oxygen species (ROS) dysregulation was evident at the later stage. Infected fish responded to elevated circulating ROS by increasing antioxidant production. Exposing the fish to a crowding stress revealed the interference in the post-stress responses. Lower cortisol response was displayed by AGD-affected groups. Collectively, the study established that PAA, within the evaluated treatment protocols, could not provide a convincing treatment resolution and, thus, requires further optimization. Nonetheless, PAA treatment altered the mucosal immune and stress responses of AGD-affected Atlantic salmon, shedding light on the host-parasite-treatment interactions. .


Assuntos
Parasitos , Salmo salar , Amebíase , Animais , Doenças dos Peixes , Mucosa , Oxidantes , Ácido Peracético , Espécies Reativas de Oxigênio
16.
Int J Mol Sci ; 23(15)2022 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-35955964

RESUMO

Smoltification (parr-smolt transformation) is a complex developmental process consisting of developmental changes that lead to remodeling of the Atlantic salmon gill. Here, the expression changes of miRNAs and mRNAs were studied by small-RNA sequencing and microarray analysis, respectively, to identify miRNAs and their predicted targets associated with smoltification and subsequent sea water adaptation (SWA). In total, 18 guide miRNAs were identified as differentially expressed (gDE miRNAs). Hierarchical clustering analysis of expression changes divided these into one cluster of 13 gDE miRNAs with decreasing expression during smoltification and SWA that included the miRNA-146, miRNA-30 and miRNA-7132 families. Another smaller cluster that showed increasing expression consisted of miR-101a-3p, miR-193b-5p, miR-499a-5p, miR-727a-3p and miR-8159-5p. The gDE miRNAs were predicted to target 747 of the genes (DE mRNAs), showing expression changes in the microarray analysis. The predicted targets included genes encoding NKA-subunits, aquaporin-subunits, cystic fibrosis transmembrane conductance regulator and the solute carrier family. Furthermore, the predicted target genes were enriched in biological processes associated with smoltification and SWA (e.g., immune system, reactive oxygen species, stress response and extracellular matrix organization). Collectively, the results indicate that remodeling of the gill involves the post-transcriptional regulation of gene expression by the characterized gDE miRNAs.


Assuntos
MicroRNAs , Salmo salar , Animais , Expressão Gênica , Brânquias/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Salmo salar/genética , Salmo salar/metabolismo , Água do Mar
17.
Inorg Chem ; 61(34): 13369-13378, 2022 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-35960761

RESUMO

The nanosized (50-70 nm) pyrochlore Bi1.5Fe0.5Ti2O7-δ was prepared by a coprecipitation technique. Characterization of Bi1.5Fe0.5Ti2O7-δ was carried out by powder X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), differential scanning calorimetry (DSC), Raman spectroscopy, Mössbauer spectroscopy, and magnetic susceptibility measurements. The study of Fe doping in Bi2Ti2O7 was performed by means of density functional theory (DFT) calculations. The nanosized Bi1.5Fe0.5Ti2O7-δ sample crystallizes in the structural type of pyrochlore (Fd3̅m). The distribution of Fe atoms over the sites of Bi and Ti was studied from DFT simulations and then confirmed by the XRD analysis and Mössbauer method. The local distribution, electronic structure, and magnetic behavior of nanosized Bi1.5Fe0.5Ti2O7-δ are determined by the local microstructure of the metastable nanosized sample. Based on the examination of the Mössbauer spectrum of the Bi1.5Fe0.5Ti2O7-δ nanopowder, the following states of oxidation were revealed for iron atoms: Fe4+ in the titanium sites with a fraction of ∼5.7% and two states of Fe3+ (in the Bi and Ti sites) with different geometries of the oxygen surrounding. The ratio of Fe3+ distributed over the sites correlates well with the distribution in the ceramic sample. The presence of Fe4+ was found only in the nanosized Bi1.5Fe0.5Ti2O7-δ. The experimental effective magnetic moment of Fe atoms in the nanosized Bi1.5Fe0.5Ti2O7-δ appeared noticeably lower than that in the ceramic sample. The temperature dependence of µeff within the temperature range of 50-300 K is adequately described by the model of coexistence of Fe3+ and Fe4+ and the existence of clusters.

18.
Inorg Chem ; 61(24): 9295-9307, 2022 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-35657753

RESUMO

Eu-doped bismuth-based Bi1.5M0.4Mg0.5Nb1.5O7-δ (M = Li and Na) pyrochlores were synthesized by the organic-inorganic precursor combustion technique. The study examined the effect of rare earth element Eu3+ doping on the structural, dielectric, optical, and luminescence properties of synthesized materials. The analysis showed that the substitution of Bi3+ cations with Eu3+ leads to dielectric permittivity decreasing due to the structural distortion for the Eu-concentrated compositions and low polarizability of Eu3+. The band gap values predicted by electronic band structure calculation using DFT-HSE03 are in line with the experimental ones and tended to increase with the decrease in the unit cell parameters with Eu concentration changing. By the optical and luminescence measurements, the specific roles of Li- and Na-containing host types, additional phases, and dopant concentration in bismuth niobate pyrochlores are shown concerning the dielectric, structural, and Eu3+ emission properties. All Eu-doped bismuth-based pyrochlore ceramics behave as high-frequency dielectrics up to 200 °C and have mixed conductivity (electronic, proton, and oxygen) at T > 200 °C. The obtained dielectric parameters make them suitable for high-frequency ceramic capacitors.

19.
Biology (Basel) ; 11(5)2022 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-35625416

RESUMO

Optimal smoltification is crucial for normal development, growth, and health of farmed Atlantic salmon in seawater. Here, we characterize miRNA expression in liver to reveal whether miRNAs regulate gene expression during this developmental transition. Expression changes of miRNAs and mRNAs was studied by small-RNA sequencing and microarray analysis, respectively. This revealed 62 differentially expressed guide miRNAs (gDE-miRNAs) that could be divided into three groups with characteristic dynamic expression patterns. Three of miRNA families are known as highly expressed in liver. A rare arm shift was observed during smoltification in the Atlantic salmon-specific novel-ssa-miR-16. The gDE-miRNAs were predicted to target 2804 of the genes revealing expression changes in the microarray analysis. Enrichment analysis revealed that targets were significantly enriched in smoltification-associated biological process groups. These included lipid and cholesterol synthesis, carbohydrate metabolism, protein metabolism and protein transport, immune system genes, circadian rhythm and stress response. The results indicate that gDE-miRNAs may regulate many of the changes associated with this developmental transition in liver. The results pave the way for validation of the predicted target genes and further study of gDE-miRNA and their targets by functional assays.

20.
Genes (Basel) ; 13(5)2022 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-35627120

RESUMO

Assessment of immune competence of farmed Atlantic salmon is especially important during smoltification and the first several months in the sea. Recently developed tools were applied to salmon raised in a traditional flow-through facility (FT, cohort 1) and in a recirculation aquaculture system (RAS, cohort 2). Fish were sampled at four time-points: parr, smolt, and at three weeks and three months after seawater transfer (SWT); expression of 85 selected immune and stress genes, IgM transcripts (Ig-seq), and circulating antibodies were analyzed. A steady increase in gene expression was seen over time in gill and spleen in both cohorts, and especially in antiviral and inflammatory genes in the gill. Differences between the cohorts were greatest in the dorsal fin but later leveled off. Comparison with a gill reference dataset found a deviation in only three of 85 fish, suggesting a good immune status in both cohorts. Levels of both specific and nonspecific antibodies were higher in cohort 2 in smolts and in growers three weeks after SWT; however, levels evened out after three months in the sea. Ig-seq indicated association between antibody production, expansion of the largest clonotypes, and massive migration of B cells from spleen to gill in smolts. The results suggested greater agitation and higher reactivity of the immune system in RAS-produced salmon, but the difference between the cohorts leveled off over time.


Assuntos
Salmo salar , Animais , Aquicultura , Brânquias/metabolismo , Humanos , Salmo salar/genética , Água do Mar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...