Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
3 Biotech ; 11(8): 386, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34350091

RESUMO

Growth of human population leads to many global and medical problems. The problems include the crisis of health, antibiotic resistance, drug discovery, etc. Increasing antimicrobial resistance of microorganisms results in the need to screen natural products (incl. antibiotics and antimicrobial peptides) and their producers in different ecological niches. The purpose of this study was to estimate antibiotic activity and biotechnological potential of rare actinobacteria Nocardiopsis sp. The strain was isolated from Okhotnichya cave located in Siberia. Here, we cultivated the strain at 3 temperature modes (13 °C, 28 °C, 37 °C) in 11 liquid nutrient (rich and poor) media. Using modern assays of liquid chromatography and high-resolution mass spectrometry, we estimated the content and number of produced natural products, distribution of their masses, and potential rate of novel secondary metabolites. We demonstrated that minimal nutrient media with l-asparagine and SM25 media with malt extract were less productive at current experimental parameters. As it was shown, this strain was characterized by antibiotic properties against Bacillus subtilis when cultivated at 28 °C. Also, weak antibiotic activity of crude extracts was found in strain cultivation at 13 °C. Also, we detected a high number of novel amphiphilic and hydrophobic NPs produced by this strain. We demonstrated both the influence of the nutrient media composition and cultivation temperature on biosynthetic capabilities of rare strain Nocardiopsis sp. Finally, high level of natural products that were predicted as novel confirms high biotechnological value of rare genera of Actinobacteria that could be explained by the evolution of microorganisms in the isolated environment of cave ecosystem.

2.
Int J Microbiol ; 2020: 5359816, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32802070

RESUMO

Inadequate use of antibiotics has led to spread of microorganisms resistant to effective antimicrobial compounds for humans and animals. This study was aimed to isolate cultivable strains of actinobacteria associated with Baikal endemic alga Draparnaldioides baicalensis and estimate their antibiotic properties. During this study, we isolated both widespread and dominant strains related to the genus Streptomyces and representatives of the genera Saccharopolyspora, Nonomuraea, Rhodococcus, and Micromonospora. For the first time, actinobacteria belonging to the genera Nonomuraea and Saccharopolyspora were isolated from Baikal ecosystem. Also, it was the first time when actinobacteria of the genus Nonomuraea were isolated from freshwater algae. Some rare strains demonstrated activity inhibiting growth of bacteria and yeasts. Also, it has been shown that the strains associated with Baikal alga D. baicalensis are active against both Gram-positive and Gram-negative bacteria. According to this study and previously published materials, diversity of cultivable actinobacteria and rare strains isolated from D. baicalensis is comparable to that of cultivable actinobacteria previously isolated from plant sources of Lake Baikal. Also, it exceeds the cultivable actinobacteria diversity previously described for macroinvertebrates, water, or sediments of Lake Baikal. The large number of rare and active strains associated with the endemic alga D. baicalensis could be the promising sources for biopharmaceutical and biotechnological developments and discovery of new natural compounds.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...