Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 132(20): 208402, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38829072

RESUMO

We analyze the flow physics inside the body cavity and downstream the deep-sea glass sponge Euplectella aspergillum. We provide evidence that the helical skeletal motifs of the sponge give rise to a rich fluid dynamic field, allowing the organism to scavenge flow from the bottom of the sea and promoting a spontaneous, organized vertical flow within its body cavity toward the osculum. Our analysis points at a functional adaptation of the organism, which can passively divert flow through the osculum in unfavorable, low ambient currents, with no need for active pumping, with potential repercussions in functional ecology, as well as the design of chemical reactors, air-treatment units, and civil and aeronaval structures.


Assuntos
Poríferos , Poríferos/fisiologia , Animais , Modelos Biológicos , Adaptação Fisiológica , Hidrodinâmica , Oceanos e Mares
3.
Nature ; 595(7868): 537-541, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34290424

RESUMO

Since its discovery1,2, the deep-sea glass sponge Euplectella aspergillum has attracted interest in its mechanical properties and beauty. Its skeletal system is composed of amorphous hydrated silica and is arranged in a highly regular and hierarchical cylindrical lattice that begets exceptional flexibility and resilience to damage3-6. Structural analyses dominate the literature, but hydrodynamic fields that surround and penetrate the sponge have remained largely unexplored. Here we address an unanswered question: whether, besides improving its mechanical properties, the skeletal motifs of E. aspergillum underlie the optimization of the flow physics within and beyond its body cavity. We use extreme flow simulations based on the 'lattice Boltzmann' method7, featuring over fifty billion grid points and spanning four spatial decades. These in silico experiments reproduce the hydrodynamic conditions on the deep-sea floor where E. aspergillum lives8-10. Our results indicate that the skeletal motifs reduce the overall hydrodynamic stress and support coherent internal recirculation patterns at low flow velocity. These patterns are arguably beneficial to the organism for selective filter feeding and sexual reproduction11,12. The present study reveals mechanisms of extraordinary adaptation to live in the abyss, paving the way towards further studies of this type at the intersection between fluid mechanics, organism biology and functional ecology.


Assuntos
Poríferos/anatomia & histologia , Poríferos/fisiologia , Água do Mar/análise , Animais , Comportamento Alimentar , Hidrodinâmica , Reprodução , Reologia
4.
Eur Phys J E Soft Matter ; 41(8): 95, 2018 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-30136131

RESUMO

In this work, we perform fully three-dimensional numerical simulations of the flow field surrounding cylindrical structures characterized by different types of corrugated surface. The simulations are carried out using the Lattice Boltzmann Method (LBM), considering a flow regime with a Reynolds number [Formula: see text]. The fluid-dynamic wake structure and stability are investigated by means of PSD analyses of the velocity components and by visual inspection of the vortical coherent structure evolution. Moreover, the energy dissipation of the flow is assessed by considering an equivalent discharge coefficient [Formula: see text], which measures the total pressure losses of the flow moving around the various layout under investigation. Outcomes from our study demonstrate that the helical ridges augment energy dissipation, but might also have a role in the passive control of the characteristic frequencies of the unsteady wake flow.


Assuntos
Hidrodinâmica , Simulação por Computador , Cinética , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...