Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Physiol Pharmacol ; 69(6)2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30898985

RESUMO

Myocarditis, a life threatening disease, is still not adequately treated. Histamine plays an important role in physiology and pathophysiology of cardiovascular system. All four histamine receptors (H1R - H4R), are present in the heart. Experimental autoimmune myocarditis (EAM) was used to investigate which histamine receptor had a greater impact on the disease's progression. EAM was evoked in Lewis rats by porcine myosin immunization. Mepyramine, ranitidine and ciproxifan were used to inhibit H1R, H2R and H3R receptors, respectively, and 2,4-diaminopyrimidines: ST994, ST1012, ST1006 were ligands of H4R. Quinapril, an ACE inhibitor, served as a reference drug. Drugs were administered daily, either from 0 - 2 weeks or from 2 to 4 weeks post EAM induction. Cardiac dysfunction developed with significant decreases in left ventricular ejection fraction and fractional shortening due to dilatation and wall thickening. EAM rats treated with mepyramine and ST994 in weeks 0 - 2 had the lowest decreases. These treated with ST994, ST1012 or quinapril performed much better the following 2 weeks without therapy than did the other groups. On autopsy their hearts were smaller, less fibrotic, histopathological changes in them of a lower grade. When the treatment started with 2 weeks' delay, the ST994-treated EAM rats showed the highest median survival. H4 receptor antagonism inhibits heart remodelling, preserves heart contractility, improves survival and may be of potent therapeutic relevance in human clinics. The blockade of H1 receptor inhibits heart dilatation but does not prolong the life.


Assuntos
Doenças Autoimunes/tratamento farmacológico , Antagonistas dos Receptores Histamínicos/farmacologia , Miocardite/tratamento farmacológico , Receptores Histamínicos/metabolismo , Disfunção Ventricular Esquerda/tratamento farmacológico , Animais , Doenças Autoimunes/metabolismo , Modelos Animais de Doenças , Coração/efeitos dos fármacos , Histamina/metabolismo , Ligantes , Masculino , Miocardite/metabolismo , Ratos , Ratos Endogâmicos Lew , Disfunção Ventricular Esquerda/metabolismo
2.
Org Biomol Chem ; 13(17): 4960-6, 2015 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-25815904

RESUMO

Posttranscriptional modifications of transfer RNAs (tRNAs) are proven to be critical for all core aspects of tRNA function. While the majority of tRNA modifications were discovered in the 1970s, their contribution in tRNA folding, stability, and decoding often remains elusive. In this work an NMR study was performed to obtain more insight in the role of the dihydrouridine (D) modification in the D-arm of tRNAi(Met) from S. pombe. While the unmodified oligonucleotide adopted several undefined conformations that interconvert in solution, the presence of a D nucleoside triggered folding into a hairpin with a stable stem and flexible loop region. Apparently the D modification is required in the studied sequence to fold into a stable hairpin. Therefore we conclude that D contributes to the correct folding and stability of D-arm in tRNA. In contrast to what is generally assumed for nucleic acids, the sharp 'imino' signal for the D nucleobase at 10 ppm in 90% H2O is not indicative for the presence of a stable hydrogen bond. The strong increase in pKa upon loss of the aromatic character in the modified nucleobase slows down the exchange of its 'imino' proton significantly, allowing its observation even in an isolated D nucleoside in 90% H2O in acidic to neutral conditions.


Assuntos
Conformação de Ácido Nucleico , RNA de Transferência/química , Uridina/análogos & derivados , Uridina/química , Modelos Moleculares
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA