Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Express ; 30(5): 7612-7624, 2022 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-35299519

RESUMO

We report a design methodology for creating high-performance photonic crystals with arbitrary geometric shapes. This design approach enables the inclusion of subwavelength shapes into the photonic crystal unit cell, synergistically combining metamaterials concepts with on-chip guided-wave photonics. Accordingly, we use the term "photonic metacrystal" to describe this class of photonic structures. Photonic metacrystals exploiting three different design freedoms are demonstrated experimentally. With these additional degrees of freedom in the design space, photonic metacrystals enable added control of light-matter interactions and hold the promise of significantly increasing temporal confinement in all-dielectric metamaterials.

2.
Biophys J ; 49(1): 269-79, 1986 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19431633

RESUMO

A new method for high-resolution imaging, near-field scanning optical microscopy (NSOM), has been developed. The concepts governing this method are discussed, and the technical challenges encountered in constructing a working NSOM instrument are described. Two distinct methods are presented for the fabrication of well-characterized, highly reproducible, subwavelength apertures. A sample one-dimensional scan is provided and compared to the scanning electron micrograph of a test pattern. From this comparison, a resolution of > 1,500 A (i.e., approximately lambda/3.6) is determined, which represents a significant step towards our eventual goal of 500 A resolution. Fluorescence has been observed through apertures smaller than 600 A and signal-to-noise calculations show that fluorescent imaging should be feasible. The application of such imaging is then discussed in reference to specific biological problems. The NSOM method employs nonionizing visible radiation and can be used in air or aqueous environments for nondestructive visualization of functioning biological systems with a resolution comparable to that of scanning electron microscopy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...