Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 15(25): 29752-29766, 2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37310722

RESUMO

The clinical success of orthopedic implants is closely related to their integration in the bone tissue promoted by rough device surfaces. The biological response of precursor cells to their artificial microenvironments plays a critical role in this process. In this study, we elucidated the relation between cell instructivity and surface microstructure of polycarbonate (PC)-based model substrates. The rough surface structure (hPC) with an average peak spacing (Sm) similar to the trabecular spacing of trabecular bone improved osteogenic differentiation of human bone marrow mesenchymal stem cells (hBMSCs), as compared to the smooth surface (sPC) and the surface with a moderate Sm value (mPC). The hPC substrate promoted the cell adhesion and assembling of F-actin and enhanced cell contractile force by upregulating phosphorylated myosin light chain (pMLC) expression. The increased cell contractile force led to YAP nuclear translocation and the elongation of cell nuclei, presenting higher levels of active form of Lamin A/C. The nuclear deformation alternated the histone modification profile, particularly the decrease of H3K27me3 and increase of H3K9ac on the promoter region of osteogenesis related genes (ALPL, RUNX2, and OCN). Mechanism study using inhibitors and siRNAs elucidated the role of YAP, integrin, F-actin, myosin, and nuclear membrane proteins in such a regulatory process of surface topography on stem cell fate. These mechanistical insights on the epigenetic level give a new perspective in understanding of the interaction of substrate and stem cells as well as provide valuable criteria for designing bioinstructive orthopedic implants.


Assuntos
Células-Tronco Mesenquimais , Osteogênese , Humanos , Osteogênese/genética , Actinas/genética , Actinas/metabolismo , Código das Histonas , Células Cultivadas , Diferenciação Celular
2.
Small ; 18(5): e2104621, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34825471

RESUMO

Polymeric devices capable of releasing submicron particles (subMP) on demand are highly desirable for controlled release systems, sensors, and smart surfaces. Here, a temperature-memory polymer sheet with a programmable smooth surface served as matrix to embed and release polystyrene subMP controlled by particle size and temperature. subMPs embedding at 80 °C can be released sequentially according to their size (diameter D of 200 nm, 500 nm, 1 µm) when heated. The differences in their embedding extent are determined by the various subMPs sizes and result in their distinct release temperatures. Microparticles of the same size (D ≈ 1 µm) incorporated in films at different programming temperatures Tp (50, 65, and 80 °C) lead to a sequential release based on the temperature-memory effect. The change of apparent height over the film surface is quantified using atomic force microscopy and the realization of sequential release is proven by confocal laser scanning microscopy. The demonstration and quantification of on demand subMP release are of technological impact for assembly, particle sorting, and release technologies in microtechnology, catalysis, and controlled release.


Assuntos
Polímeros , Poliestirenos , Microscopia de Força Atômica , Tamanho da Partícula , Temperatura
3.
Proc Natl Acad Sci U S A ; 117(4): 1895-1901, 2020 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-31932451

RESUMO

Stem cells are capable of sensing and processing environmental inputs, converting this information to output a specific cell lineage through signaling cascades. Despite the combinatorial nature of mechanical, thermal, and biochemical signals, these stimuli have typically been decoupled and applied independently, requiring continuous regulation by controlling units. We employ a programmable polymer actuator sheet to autonomously synchronize thermal and mechanical signals applied to mesenchymal stem cells (MSCs). Using a grid on its underside, the shape change of polymer sheet, as well as cell morphology, calcium (Ca2+) influx, and focal adhesion assembly, could be visualized and quantified. This paper gives compelling evidence that the temperature sensing and mechanosensing of MSCs are interconnected via intracellular Ca2+ Up-regulated Ca2+ levels lead to a remarkable alteration of histone H3K9 acetylation and activation of osteogenic related genes. The interplay of physical, thermal, and biochemical signaling was utilized to accelerate the cell differentiation toward osteogenic lineage. The approach of programmable bioinstructivity provides a fundamental principle for functional biomaterials exhibiting multifaceted stimuli on differentiation programs. Technological impact is expected in the tissue engineering of periosteum for treating bone defects.


Assuntos
Tecido Adiposo/citologia , Cálcio/metabolismo , Osteogênese , Polímeros/química , Células-Tronco/citologia , Estresse Mecânico , Temperatura , Tecido Adiposo/metabolismo , Diferenciação Celular , Linhagem da Célula , Células Cultivadas , Humanos , Mecanotransdução Celular , Células-Tronco/metabolismo , Engenharia Tecidual
4.
Clin Hemorheol Microcirc ; 75(2): 163-176, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31929151

RESUMO

Copolyetheresterurethane (PDC) is a biodegradable, shape-memory biomaterial, which has been shown to be of low toxicity and pro-angiogenic in vitro. In the present study we examined the in vivo compatibility of PDC as a compression molded film and as electrospun scaffolds and its well established constituent, the homopolymer poly(p-dioxanone) (PPDO), which were compared with the clinically used poly[(vinylidene fluoride)-co-hexafluoropropene] (PVDF) as reference material. The materials were implanted in the subcutaneous tissue of mice and the host responses were analyzed histologically 7 and 28 days after implantation.All materials induced a foreign body response (FRB) including the induction of foreign body giant cells and a peripheral fibrous capsule. PDC, PPDO and PVDF films showed no signs of degradation after 28 days. PDC films showed a significantly reduced associated macrophage layer and fibrous capsule on their surface. Few fragments of PDC and PPDO scaffolds were present at the implantation site, while PVDF scaffolds were still present in large amounts at day 28. Especially aligned electrospun PDC scaffold induced a significantly thinner fibrous and a slightly reduced inflammatory response after 28 days of implantation. In addition, only PDC aligned fibrous scaffold structures induced a significant increase in angiogenesis.In summary, PDC films outperformed PPDO and PVDF films in terms of compatibility, especially in capsule and macrophage layer thickness. Through microstructuring of PDC and PPDO into scaffolds an almost complete degradation was observed after 28 days, while their respective films remained almost unchanged. However, the capsule thickness of all scaffolds was comparable to the films after 28 days. Finally, the parallel arrangement of PDC fibers enabled a strong enhancement of angiogenesis within the scaffold. Hence, material chemistries influence overall compatibility in vivo, while angiogenesis could be influenced more strongly by microstructural parameters than chemical ones.


Assuntos
Materiais Biocompatíveis/química , Polímeros/metabolismo , Engenharia Tecidual/métodos , Animais , Masculino , Camundongos
5.
Clin Hemorheol Microcirc ; 75(1): 85-98, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31884458

RESUMO

Establishing an endothelial cell (EC) monolayer on top of the blood contacting surface of grafts is considered to be a promising approach for creating a hemocompatible surface. Here we utilized the high affinity interactions between the EC plasma membrane expressed enzyme called endothelin converting enzyme-1 (ECE-1) and its corresponding substrate big Endothelin-1 (bigET-1) to engineer an EC-specific binding surface. Since enzymatic cleavage of substrates require physical interaction between the enzyme and its corresponding substrate, it was hypothesized that a surface with chemically immobilized synthetic bigET-1 will preferentially attract ECs over other types of cells found in vascular system such as vascular smooth muscle cells (VSMCs). First, the expression of ECE-1 was significantly higher in ECs, and ECs processed synthetic bigET-1 to produce ET-1 in a cell number-dependent manner. Such interaction between ECs and synthetic bigET-1 was also detectible in blood. Next, vinyl-terminated self-assembled monolayers (SAMs) were established, oxidized and activated on a glass substrate as a model to immobilize synthetic bigET-1 via amide bonds. The ECs cultured on the synthetic bigET-1-immobilized surface processed larger amount of synthetic bigET-1 to produce ET-1 compared to VSMCs (102.9±5.13 vs. 9.75±0.74 pg/ml). The number of ECs bound to the synthetic bigET-1-immobilized surface during 1 h of shearing (5dyne/cm2) was approximately 3-fold higher than that of VSMCs (46.25±12.61 vs. 15.25±3.69 cells/100×HPF). EC-specific binding of synthetic bigET-1-immobilized surface over a surface modified with collagen, a common substance for cell adhesion, was also observed. The present study demonstrated that using the substrate-enzyme affinity (SEA) of cell type-specific enzyme and its corresponding substrate can be an effective method to engineer a surface preferentially binds specific type of cells. This novel strategy might open a new route toward rapid endothelialization under dynamic conditions supporting the long-term patency of cardiovascular implants.


Assuntos
Células Endoteliais/metabolismo , Humanos , Estresse Mecânico
6.
Biomacromolecules ; 21(2): 338-348, 2020 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-31746189

RESUMO

Within the field of shape-changing materials, synthetic chemical modification has been widely used to introduce key structural units and subsequently expand the mechanical functionality of actuator devices. The introduction of architectural elements that facilitate in situ control over mechanical properties and complete geometric reconfiguration of a device is highly desirable to increase the morphological diversity of polymeric actuator materials. The subject of the present study is a multiblock copolymer with semicrystalline poly(l-lactide) and poly(ε-caprolactone) (PLLA-PCL) segments. By harnessing the stereocomplexation of copolymer chains with a poly(d-lactide) oligomer (PDLA), we provide anchoring points for physical network formation and demonstrate how a blending process can be used to efficiently vary the mechanical properties of a shape-memory actuator. We investigate the effect of molecular structure on the actuation performance of the material in cyclic thermomechanical tests, with a maximum reversible shape change εrev' = 13.4 ± 1.5% measured at 3.1 wt % of polylactide stereocomplex content in the multiblock copolymer matrix. The thermophysical properties, crystalline structure, and phase morphology were analyzed by DSC, WAXS and AFM respectively, elucidating the structure-to-function relationship in physically cross-linked blended materials. The work demonstrates a one-step technique for manufacturing a polymeric actuator and tuning its performance in situ. This approach should greatly improve the efficiency of physically cross-linked actuator fabrication, allowing composition and physical behavior to be precisely and easily controlled.


Assuntos
Poliésteres/química , Polímeros/química , Varredura Diferencial de Calorimetria , Cromatografia em Gel , Reagentes de Ligações Cruzadas/química , Espectroscopia de Ressonância Magnética , Microscopia de Força Atômica , Peso Molecular , Polímeros/síntese química , Espalhamento de Radiação , Raios X
7.
Clin Hemorheol Microcirc ; 74(1): 53-66, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31743992

RESUMO

Microfibers with a core-shell structure can be produced by co-axial electrospinning, allowing for the functionalization of the outer layer with bioactive molecules. In this study, a thermoplastic, degradable polyesteretherurethane (PEEU), consisting of poly(p-dioxanone) (PPDO) and poly(ɛ-caprolactone) (PCL) segments with different PPDO to PCL weight ratios, were processed into fiber meshes by co-axial electrospinning with gelatin. The prepared PEEU fibers have a diameter of 1.3±0.5 µm and an elastic modulus of around 5.1±1.0 MPa as measured by tensile testing in a dry state at 37°C, while the PEEU/Gelatin core-shell fibers with a gelatin content of 12±6 wt% and a diameter of 1.5±0.5 µm possess an elastic modulus of 15.0±1.1 MPa in a dry state at 37 °C but as low as 0.7±0.7 MPa when hydrated at 37 °C. Co-axial electrospinning allowed for the homogeneous distribution of the gelatin shell along the whole microfiber. Gelatin with conjugated Fluorescein (FITC) remained stable on the PEEU fibers after 7 days incubation in Phosphate-buffered saline (PBS) at 37 °C. The gelatin coating on PEEU fibers lead to enhanced human adipose tissue derived mesenchymal stem cell (hADSC) attachment and a proliferation rate 81.7±34.1 % higher in cell number in PEEU50/Gelatin fibers after 7 days of cell culture when compared to PEEU fibers without coating. In this work, we demonstrate that water-soluble gelatin can be incorporated as the outer shell of a polymer fiber via molecular entanglement, with a sustained presence and role in enhancing stem cell attachment and proliferation.


Assuntos
Proliferação de Células/fisiologia , Gelatina/química , Células-Tronco Mesenquimais/metabolismo , Poliésteres/química , Polímeros/metabolismo , Engenharia Tecidual/métodos , Humanos , Alicerces Teciduais/química
8.
Clin Hemorheol Microcirc ; 74(4): 405-415, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31683471

RESUMO

BACKGROUND: The behavior of endothelial cells is remarkably influenced by the physical and biochemical signals from their surrounding microenvironments. OBJECTIVE: Here, the elasticity of fiber meshes was studied as a design parameter of substrates for endothelial cells in order to modulate angiogenesis. METHODS: Human umbilical vein endothelial cells (HUVECs) were cultured on electrospun fiber meshes made from polyetheresterurethane (PEEU), differing in their elasticity. Cell morphology, proliferation, migration and angiogenesis of endothelial cells on the degradable substrate meshes were characterized. RESULTS: The aspect ratio of HUVECs cultured on the fiber meshes from PEEU materials increased with increasing stiffness of the materials. HUVECs cultured on fiber meshes with high stiffness (Young's modulus E = 4.5±0.8 MPa) presented a higher proliferation rate and significantly faster migration velocity, as well as higher tube formation capability than the cells cultured on fiber meshes with low stiffness (E = 2.6±0.8 MPa). CONCLUSIONS: These results suggested that tuning the fiber meshes' elasticity might be a potential strategy for modulating the formation or regeneration of blood vessels.


Assuntos
Tecido Elástico/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Polímeros/metabolismo , Humanos
9.
Clin Hemorheol Microcirc ; 73(1): 229-236, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31561331

RESUMO

The mechanical properties of electrospun fiber meshes typically are measured by tensile testing at the macro-scale without precisely addressing the spatial scale of living cells and their submicron architecture. Atomic force microscopy (AFM) enables the examination of the nano- and micro-mechanical properties of the fibers with potential to correlate the structural mechanical properties across length scales with composition and functional behavior. In this study, a polyesteretherurethane (PEEU) polymer containing poly(p-dioxanone) (PPDO) and poly(ɛ-caprolactone) (PCL) segments was electrospun into fiber meshes or suspended single fibers. We employed AFM three point bending testing and AFM force mapping to measure the elastic modulus and stiffness of individual micro/nanofibers and the fiber mesh. The local stiffness of the fiber mesh including the randomized, intersecting structure was also examined for each individual fiber. Force mapping results with a set point of 50 nN demonstrated the dependence of the elasticity of a single fiber on the fiber mesh architecture. The non-homogeneous stiffness along the same fiber was attributed to the intersecting structure of the supporting mesh morphology. The same fiber measured at a point with and without axial fiber support showed a remarkable difference in stiffness, ranging from 0.2 to 10 nN/nm respectively. For the region, where supporting fibers densely intersected, the stiffness was found to be considerably higher. In the region where the degrees of freedom of the fibers was not restricted, allowing greater displacement, the stiffness were observed to be lower. This study elucidates the relationship between architecture and the mechanical properties of a micro/nanofiber mesh. By providing a greater understanding of the role of spatial arrangement and organization on the surface mechanical properties of such materials, we hope to provide insight into the design of microenvironments capable of regulating cell functionality.


Assuntos
Materiais Biocompatíveis/química , Microscopia de Força Atômica/métodos , Poliésteres/química , Humanos
10.
Clin Hemorheol Microcirc ; 73(1): 219-228, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31561335

RESUMO

Electrospinning has attracted significant attention as a method to produce cell culture substrates whose fibrous structure mimics the native extracellular matrix (ECM). In this study, the influence of E-modulus of fibrous substrates on the lineage commitment of human adipose-derived stem cells (hADSCs) was studied using fiber meshes prepared via the electrospinning of a polyetheresterurethane (PEEU) consisting of poly(ρ-dioxanone) (PPDO) and poly(ɛ-caprolactone) (PCL) segments. The PPDO: PCL weight ratio was varied from 40:60 to 70:30 to adjust the physiochemical properties of the PEEU fibers. The cells attached on stiffer PEEU70 (PPDO:PCL,= 70:30) fiber meshes displayed an elongated morphology compared to those cultured on softer fibers. The nuclear aspect ratio (width vs. length of a nucleus) of hADSCs cultured on softer PEEU40 (PPDO:PCL = 40:60) fibers was lower than on stiffer fibers. The osteogenic differentiation of hADSCs was enhanced by culturing on stiffer fibers. Compared to PEEU40, a 73% increase of osteocalcin expression and a 34% enhancement of alkaline phosphatase (ALP) activity was observed in cells on PEEU70. These results demonstrated that the differentiation commitment of stem cells could be regulated via tailoring the mechanical properties of electrospun fibers.


Assuntos
Células-Tronco Mesenquimais/metabolismo , Nanofibras/química , Osteogênese/genética , Polímeros/metabolismo , Diferenciação Celular , Humanos
11.
Science ; 365(6449): 155-158, 2019 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-31296766

RESUMO

Classic rotating engines are powerful and broadly used but are of complex design and difficult to miniaturize. It has long remained challenging to make large-stroke, high-speed, high-energy microengines that are simple and robust. We show that torsionally stiffened shape memory nanocomposite fibers can be transformed upon insertion of twist to store and provide fast and high-energy rotations. The twisted shape memory nanocomposite fibers combine high torque with large angles of rotation, delivering a gravimetric work capacity that is 60 times higher than that of natural skeletal muscles. The temperature that triggers fiber rotation can be tuned. This temperature memory effect provides an additional advantage over conventional engines by allowing for the tunability of the operation temperature and a stepwise release of stored energy.


Assuntos
Órgãos Artificiais , Fibra de Carbono , Fibras Musculares Esqueléticas/química , Nanocompostos , Materiais Inteligentes
12.
Biomed Mater ; 14(2): 024101, 2019 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-30524033

RESUMO

In biomaterial development, the design of material surfaces that mimic the extra-cellular matrix (ECM) in order to achieve favorable cellular instruction is rather challenging. Collagen-type IV (Col-IV), the major scaffolding component of Basement Membranes (BM), a specialized ECM with multiple biological functions, has the propensity to form networks by self-assembly and supports adhesion of cells such as endothelial cells or stem cells. The preparation of biomimetic Col-IV network-like layers to direct cell responses is difficult. We hypothesize that the morphology of the layer, and especially the density of the available adhesion sites, regulates the cellular adhesion to the layer. The Langmuir monolayer technique allows for preparation of thin layers with precisely controlled packing density at the air-water (A-W) interface. Transferring these layers onto cell culture substrates using the Langmuir-Schäfer (LS) technique should therefore provide a pathway for preparation of BM mimicking layers with controlled cell adherence properties. In situ characterization using ellipsometry and polarization modulation-infrared reflection absorption spectroscopy of Col-IV layer during compression at the A-W interface reveal that there is linear increase of surface molecule concentration with negligible orientational changes up to a surface pressure of 25 mN m-1. Smooth and homogeneous Col-IV network-like layers are successfully transferred by LS method at 15 mN m-1 onto poly(ethylene terephthalate) (PET), which is a common substrate for cell culture. In contrast, the organization of Col-IV on PET prepared by the traditionally employed solution deposition method results in rather inhomogeneous layers with the appearance of aggregates and multilayers. Progressive increase in the number of early adherent mesenchymal stem cells (MSCs) after 24 h by controlling the areal Col-IV density by LS transfer at 10, 15 and 20 mN m-1 on PET is shown. The LS method offers the possibility to control protein characteristics on biomaterial surfaces such as molecular density and thereby, modulate cell responses.


Assuntos
Materiais Biocompatíveis/química , Técnicas de Cultura de Células , Colágeno Tipo IV/química , Células-Tronco/citologia , Tecido Adiposo , Biomimética , Adesão Celular , Colágeno Tipo I/química , Células Endoteliais/metabolismo , Matriz Extracelular/metabolismo , Humanos , Concentração de Íons de Hidrogênio , Teste de Materiais , Células-Tronco Mesenquimais/citologia , Microscopia de Força Atômica , Polietilenotereftalatos/química , Refratometria , Propriedades de Superfície , Molhabilidade
13.
Clin Hemorheol Microcirc ; 71(2): 277-289, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30530970

RESUMO

Non-swelling hydrophobic poly(n-butyl acrylate) network (cPnBA) is a candidate material for synthetic vascular grafts owing to its low toxicity and tailorable mechanical properties. Mesenchymal stem cells (MSCs) are an attractive cell type for accelerating endothelialization because of their superior anti-thrombosis and immune modulatory function. Further, they can differentiate into smooth muscle cells or endothelial-like cells and secret pro-angiogenic factors such as vascular endothelial growth factor (VEGF). MSCs are sensitive to the substrate mechanical properties, with the alteration of their major cellular behavior and functions as a response to substrate elasticity. Here, we cultured human adipose-derived mesenchymal stem cells (hADSCs) on cPnBAs with different mechanical properties (cPnBA250, Young's modulus (E) = 250 kPa; cPnBA1100, E = 1100 kPa) matching the elasticity of native arteries, and investigated their cellular response to the materials including cell attachment, proliferation, viability, apoptosis, senescence and secretion. The cPnBA allowed high cell attachment and showed negligible cytotoxicity. F-actin assembly of hADSCs decreased on cPnBA films compared to classical tissue culture plate. The difference of cPnBA elasticity did not show dramatic effects on cell attachment, morphology, cytoskeleton assembly, apoptosis and senescence. Cells on cPnBA250, with lower proliferation rate, had significantly higher VEGF secretion activity. These results demonstrated that tuning polymer elasticity to regulate human stem cells might be a potential strategy for constructing stem cell-based artificial blood vessels.


Assuntos
Acrilatos/uso terapêutico , Artérias/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Polímeros/uso terapêutico , Fator A de Crescimento do Endotélio Vascular/metabolismo , Acrilatos/farmacologia , Elasticidade , Humanos , Células-Tronco Mesenquimais/citologia , Polímeros/farmacologia
14.
Clin Hemorheol Microcirc ; 70(4): 511-529, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30562895

RESUMO

BACKGROUND: The formation of a functionally-confluent endothelial cell (EC) monolayer affords proliferation of EC, which only happens in case of appropriate migratory activity. AIM OF THE STUDY: The migratory pathway of human umbilical endothelial cells (HUVEC) was investigated on different polymeric substrates. MATERIAL AND METHODS: Surface characterization of the polymers was performed by contact angle measurements and atomic force microscopy under wet conditions. 30,000 HUVEC per well were seeded on polytetrafluoroethylene (PTFE) (θadv = 119°±2°), on low-attachment plate LAP (θadv = 28°±2°) and on polystyrene based tissue culture plates (TCP, θadv = 22°±1°). HUVEC tracks (trajectories) were recorded by time lapse microscopy and the euclidean distance (straight line between starting and end point), the total distance and the velocities of HUVEC not leaving the vision field were determined. RESULTS: On PTFE, 42 HUVEC were in the vision field directly after seeding. The mean length of single migration steps (SML) was 6.1±5.2 µm, the mean velocity (MV) 0.40±0.3 µm·min-1 and the complete length of the trajectory (LT) was 710±440 µm. On TCP 82 HUVEC were in the vision field subsequent to seeding. The LT was 840±550 µm, the SML 6.1±5.2 µm and the MV 0.44±0.3 µm·min-1. The trajectories on LAP differed significantly in respect to SML (2.4±3.9 µm, p < 0.05), the MV (0.16±0.3 µm·min-1, p < 0.05) and the LT (410±300 µm, p < 0.05), compared to PTFE and TCP. Solely on TCP a nearly confluent EC monolayer developed after three days. While on TCP diffuse signals of vinculin were found over the whole basal cell surface organizing the binding of the cells by focal adhesions, on PTFE vinculin was merely arranged at the cell rims, and on the hydrophilic material (LAP) no focal adhesions were found. CONCLUSION: The study revealed that the wettability of polymers affected not only the initial adherence but also the migration of EC, which is of importance for the proliferation and ultimately the endothelialization of polymer-based biomaterials.


Assuntos
Adesão Celular/fisiologia , Movimento Celular/fisiologia , Proliferação de Células/fisiologia , Células Endoteliais/metabolismo , Polímeros/química , Células Endoteliais/citologia , Humanos
15.
Clin Hemorheol Microcirc ; 70(4): 573-583, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30372670

RESUMO

Polycarbonate (PC) substrate is well suited for culturing human mesenchymal stem cells (MSCs) with high proliferation rate, low cell apoptosis rate and negligible cytotoxic effects. However, little is known about the influence of PC on MSC activity including senescence, differentiation and secretion. In this study, the PC cell culture insert was applied for human MSC culture and was compared with polystyrene (PS) and standard tissue culture plate (TCP). The results showed that MSCs were able to adhere on PC surface, exhibiting a spindle-shaped morphology. The size and distribution of focal adhesions of MSCs were similar on PC and TCP. The senescence level of MSCs on PC was comparable to that on TCP, but was significantly lower than that on PS. MSCs on PC were capable of self-renewal and differentiation into multiple cell lineages, including osteogenic and adipogenic lineages. MSCs cultured on PC secreted a higher level inflammatory cytokines and pro-angiogenic factors including FGF2 and VEGF. Conclusively, PC represents a promising cell culture material for human MSCs.


Assuntos
Células-Tronco Mesenquimais/metabolismo , Cimento de Policarboxilato/metabolismo , Técnicas de Cultura de Células , Diferenciação Celular , Proliferação de Células , Humanos
16.
Clin Hemorheol Microcirc ; 69(3): 437-445, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29843229

RESUMO

The endothelialization of synthetic surfaces applied as cardiovascular implant materials is an important issue to ensure the anti-thrombotic quality of a biomaterial. However, the rapid and constant development of a functionally-confluent endothelial cell monolayer is challenging. In order to investigate the compatibility of potential implant materials with endothelial cells several in vitro studies are performed. Here, glass and tissue culture plates (TCP) are often used as reference materials for in vitro pre-testing. However, a direct comparison of both substrates is lacking.Therefore, a comparison of study results is difficult, since results are often related to various reference materials. In this study, the endothelialization of glass and TCP was investigated in terms of adherence, morphology, integrity, viability and function using human umbilical vein endothelial cells (HUVEC).On both substrates an almost functionally confluent HUVEC monolayer was developed after nine days of cell seeding with clearly visible cell rims, decreased stress fiber formation and a pronounced marginal filament band. The viability of HUVEC was comparable for both substrates nine days after cell seeding with only a few dead cells. According to that, the cell membrane integrity as well as the metabolic activity showed no differences between TCP and glass. However, a significant difference was observed for the secretion of IL-6 and IL-8. The concentration of both cytokines, which are associated with migratory activity, was increased in the supernatant of HUVEC seeded on TCP. This result matches well with the slightly increased number of adherent HUVEC on TCP.In conclusion, these findings indicate that both reference materials are almost comparable and can be used equivalently as control materials in in vitro endothelialization studies.


Assuntos
Materiais Biocompatíveis/química , Células Cultivadas/química , Vidro/química , Células Endoteliais da Veia Umbilical Humana/metabolismo , Polímeros/química , Células Endoteliais da Veia Umbilical Humana/citologia , Humanos
17.
Chemphyschem ; 19(16): 2078-2084, 2018 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-29683553

RESUMO

The implementation of shape-memory effects (SME) in polymeric micro- or nano-objects currently relies on the application of indirect macroscopic manipulation techniques, for example, stretchable molds or phantoms, to ensembles of small objects. Here, we introduce a method capable of the controlled manipulation and SME quantification of individual micro- and nano-objects in analogy to macroscopic thermomechanical test procedures. An atomic force microscope was utilized to address individual electro-spun poly(ether urethane) (PEU) micro- or nanowires freely suspended between two micropillars on a micro-structured silicon substrate. In this way, programming strains of 10±1% or 21±1% were realized, which could be successfully fixed. An almost complete restoration of the original free-suspended shape during heating confirmed the excellent shape-memory performance of the PEU wires. Apparent recovery stresses of σmax,app =1.2±0.1 and 33.3±0.1 MPa were obtained for a single microwire and nanowire, respectively. The universal AFM test platform described here enables the implementation and quantification of a thermomechanically induced function for individual polymeric micro- and nanosystems.

18.
Clin Hemorheol Microcirc ; 69(1-2): 175-185, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29630537

RESUMO

Remaining uremic toxins in the blood of chronic renal failure patients represent one central challenge in hemodialysis therapies. Highly porous poly(ether imide) (PEI) microparticles have been recently introduced as candidate absorber materials, which show a high absorption capacity for uremic toxins and allow hydrophilic surface modification suitable for minimization of serum protein absorption. In this work, the effects of extracts prepared from PEI microparticles modified by nucleophilic reaction with low molecular weight polyethylene imine (Pei) or potassium hydroxide (KOH), on human monocytic (THP-1) cells are studied. The obtained results suggested that the extracts of Pei and KOH modified PEI absorbers have no negative effect on THP-1 cell viability and do not initiate the critical differentiation towards macrophages. The extracts did not enhance transcript or protein levels of investigated proinflammatory markers in THP-1 cells, namely, TNFµ, MCP1, IL6 and IL8. Based on these findings such modified PEI microparticles should be qualified for further pre-clinical evaluation i.e. in an in vivo animal experiment.


Assuntos
Micropartículas Derivadas de Células/química , Éter/química , Imidas/química , Macrófagos/metabolismo , Contagem de Células , Diferenciação Celular , Humanos , Monócitos/metabolismo
19.
Polymers (Basel) ; 10(3)2018 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-30966290

RESUMO

Crosslinking of thermoplastics is a versatile method to create crystallizable polymer networks, which are of high interest for shape-memory actuators. Here, crosslinked poly(ε-caprolactone) thermosets (cPCLs) were prepared from linear starting material, whereby the amount of extractable polymer was varied. Fractions of 5⁻60 wt % of non-crosslinked polymer chains, which freely interpenetrate the crosslinked network, were achieved leading to differences in the resulting phase of the bulk material. This can be described as "sponge-like" with open or closed compartments depending on the amount of interpenetrating polymer. The crosslinking density and the average network chain length remained in a similar range for all network structures, while the theoretical accessible volume for reptation of the free polymer content is affected. This feature could influence or introduce new functions into the material created by thermomechanical treatment. The effect of interpenetrating PCL in cPCLs on the reversible actuation was analyzed by cyclic, uniaxial tensile tests. Here, high reversible strains of up to ∆ε = 24% showed the enhanced actuation performance of networks with a non-crosslinked PCL content of 30 wt % resulting from the crystal formation in the phase of the non-crosslinked PCL and co-crystallization with network structures. Additional functionalities are reprogrammability and self-healing capabilities for networks with high contents of extractable polymer enabling reusability and providing durable actuator materials.

20.
ACS Appl Mater Interfaces ; 9(39): 33559-33564, 2017 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-28920427

RESUMO

Reversible movements of current polymeric actuators stem from the continuous response to signals from a controlling unit, and subsequently cannot be interrupted without stopping or eliminating the input trigger. Here, we present actuators based on cross-linked blends of two crystallizable polymers capable of pausing their movements in a defined manner upon continuous cyclic heating and cooling. This noncontinuous actuation can be adjusted by varying the applied heating and cooling rates. The feasibility of these devices for technological applications was shown in a 140 cycle experiment of free-standing noncontinuous shape shifts, as well as by various demonstrators.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...