Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemphyschem ; 20(1): 134-141, 2019 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-30403318

RESUMO

In this work, we present an experimental setup for the in situ and ex situ study of the optical activity of samples, which can be prepared under ultra-high vacuum (UHV) conditions by second-harmonic generation circular dichroism (SHG-CD) over a broad spectral range. The use of a racemic mixture as a qualified reference for the anisotropy factor is described and, as an example, the chiroptical properties of 1.5 µm thick (multilayers) as well as sub-monolayer thin films of the R- and S-enantiomer of 1,1'-Bi-2-naphthol (BINOL) evaporated onto BK7 substrates were investigated.

2.
ACS Omega ; 3(6): 6388-6394, 2018 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-31458821

RESUMO

The performance of semiconducting polymers strongly depends on their intra- and intermolecular electronic interactions. Therefore, the morphology and particularly crystallinity and crystal structure play a crucial role in enabling a sufficient overlap between the orbitals of neighboring polymers. A new solution-based in situ polymerization for the fabrication of native polythiophene thin films is presented, which exploits the film formation process to influence the polymer crystal structure in the resulting thin films. The synthesis of the insoluble polythiophene is based on an oxidative reaction in which the oxidizing agent, iron(III) p-toluenesulfonate (FeTos), initially oxidizes the monomers to enable the polymer chain growth and secondly the final polymers, thereby chemically doping the polythiophene. To exploit the fact that the doped polythiophene has a different crystal packing structure compared to the undoped polythiophene, we investigate the structural effect of this inherent doping process by varying the amounts of FeTos in the reaction mixture, creating polythiophene thin films with different degrees of doping. The structural investigation performed by means of grazing incidence wide-angle X-ray scattering (GIWAXS) suggests that the strongly doped polymer chains aggregate in a π-stacked manner in the film formation process. Moreover, this π-stacking can be maintained after the removal of the dopant molecules. GIWAXS measurements, molecular dynamics simulations, and spectroscopic analysis suggest the presence of polythiophene in a novel and stable crystal structure with an enhanced intermolecular interaction.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...