Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Chem ; 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38702406

RESUMO

Porous covalent organic frameworks (COFs) enable the realization of functional materials with molecular precision. Past research has typically focused on generating rigid frameworks where structural and optoelectronic properties are static. Here we report dynamic two-dimensional (2D) COFs that can open and close their pores upon uptake or removal of guests while retaining their crystalline long-range order. Constructing dynamic, yet crystalline and robust frameworks requires a well-controlled degree of flexibility. We have achieved this through a 'wine rack' design where rigid π-stacked columns of perylene diimides are interconnected by non-stacked, flexible bridges. The resulting COFs show stepwise phase transformations between their respective contracted-pore and open-pore conformations with up to 40% increase in unit-cell volume. This variable geometry provides a handle for introducing stimuli-responsive optoelectronic properties. We illustrate this by demonstrating switchable optical absorption and emission characteristics, which approximate 'null-aggregates' with monomer-like behaviour in the contracted COFs. This work provides a design strategy for dynamic 2D COFs that are potentially useful for realizing stimuli-responsive materials.

2.
Inorg Chem ; 63(15): 6571-6575, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38572833

RESUMO

Structure-porosity relationships for metal-organic polyhedra (MOPs) are hardly investigated because they tend to be amorphized after activation, which inhibits crystallographic characterization. Here, we show a mixed-ligand strategy to statistically distribute two distinct carbazole-type ligands within rhodium-based octahedral MOPs, leading to systematic tuning of the microporosity in the resulting amorphous solids.

3.
Adv Mater ; 36(4): e2305783, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37643306

RESUMO

Stimuli-responsive molecular systems support within permanently porous materials offer the opportunity to host dynamic functions in multifunctional smart materials. However, the construction of highly porous frameworks featuring external-stimuli responsiveness, for example by light excitation, is still in its infancy. Here a general strategy is presented to construct spiropyran-functionalized highly porous switchable aromatic frameworks by modular and high-precision anchoring of molecular hooks and an innovative in situ solid-state grafting approach. Three spiropyran-grafted frameworks bearing distinct functional groups exhibiting various stimuli-responsiveness are generated by two-step post-solid-state synthesis of a parent indole-based material. The quantitative transformation and preservation of high porosity are demonstrated by spectroscopic and gas adsorption techniques. For the first time, a highly efficient strategy is provided to construct multi-stimuli-responsive, yet structurally robust, spiropyran materials with high pore capacity which is proved essential for the reversible and quantitative isomerization in the bulk as demonstrated by solid-state NMR spectroscopy. The overall strategy allows to construct dynamic materials that undergoes reversible transformation of spiropyran to zwitterionic merocyanine, by chemical and physical stimulation, showing potential for pH active control, responsive gas uptake and release, contaminant removal, and water harvesting.

4.
Commun Chem ; 6(1): 151, 2023 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-37452112

RESUMO

Dynamic crystalline materials have emerged as a unique category of condensed phase matter that combines crystalline lattice with components that display dynamic behavior in the solid state. This has involved a range of materials incorporating dynamic functional units in the form of stimuli-responsive molecular switches and machines, among others. In particular, it has been possible by relying on framework materials, such as porous molecular frameworks and other hybrid organic-inorganic systems that demonstrated potential for serving as scaffolds for dynamic molecular functions. As functional dynamics increase the level of complexity, the associated phenomena are often overlooked and need to be explored. In this perspective, we discuss a selection of recent developments of dynamic solid-state materials across material classes, outlining opportunities and fundamental and methodological challenges for their advancement toward innovative functionality and applications.

5.
Nat Commun ; 14(1): 3223, 2023 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-37270577

RESUMO

A unique feature of metal-organic frameworks (MOFs) in contrast to rigid nanoporous materials is their structural switchabilty offering a wide range of functionality for sustainable energy storage, separation and sensing applications. This has initiated a series of experimental and theoretical studies predominantly aiming at understanding the thermodynamic conditions to transform and release gas, but the nature of sorption-induced switching transitions remains poorly understood. Here we report experimental evidence for fluid metastability and history-dependent states during sorption triggering the structural change of the framework and leading to the counterintuitive phenomenon of negative gas adsorption (NGA) in flexible MOFs. Preparation of two isoreticular MOFs differing by structural flexibility and performing direct in situ diffusion studies aided by in situ X-ray diffraction, scanning electron microscopy and computational modelling, allowed assessment of n-butane molecular dynamics, phase state, and the framework response to obtain a microscopic picture for each step of the sorption process.

6.
J Am Chem Soc ; 145(18): 10051-10060, 2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-37125876

RESUMO

The outstanding diversity of Zr-based frameworks is inherently linked to the variable coordination geometry of Zr-oxo clusters and the conformational flexibility of the linker, both of which allow for different framework topologies based on the same linker-cluster combination. In addition, intrinsic structural disorder provides a largely unexplored handle to further expand the accessibility of novel metal-organic framework (MOF) structures that can be formed. In this work, we report the concomitant synthesis of three topologically different MOFs based on the same M6O4(OH)4 clusters (M = Zr or Hf) and methane-tetrakis(p-biphenyl-carboxylate) (MTBC) linkers. Two novel structural models are presented based on single-crystal diffraction analysis, namely, cubic c-(4,12)MTBC-M6 and trigonal tr-(4,12)MTBC-M6, which comprise 12-coordinated clusters and 4-coordinated tetrahedral linkers. Notably, the cubic phase features a new architecture based on orientational cluster disorder, which is essential for its formation and has been analyzed by a combination of average structure refinements and diffuse scattering analysis from both powder and single-crystal X-ray diffraction data. The trigonal phase also features structure disorder, although involving both linkers and secondary building units. In both phases, remarkable geometrical distortion of the MTBC linkers illustrates how linker flexibility is also essential for their formation and expands the range of achievable topologies in Zr-based MOFs and its analogues.

7.
Angew Chem Int Ed Engl ; 62(14): e202217680, 2023 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-36591731

RESUMO

Around 10-15 % of the world's energy consumption is accounted for by the separation and purification of chemicals. Among them is the enrichment and separation of isotopologues which are an essential aspect of modern chemistry. In their recent work, Su et al. demonstrate the separation of water isotopologues by responsive dynamic pore windows in a microporous coordination polymer with unprecedented selectivity based on an elegant mechanism.

8.
Chem Sci ; 13(28): 8253-8264, 2022 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-35919721

RESUMO

The incorporation of molecular machines into the backbone of porous framework structures will facilitate nano actuation, enhanced molecular transport, and other out-of-equilibrium host-guest phenomena in well-defined 3D solid materials. In this work, we detail the synthesis of a diamine-based light-driven molecular motor and its incorporation into a series of imine-based polymers and covalent organic frameworks (COF). We study structural and dynamic properties of the molecular building blocks and derived self-assembled solids with a series of spectroscopic, diffraction, and theoretical methods. Using an acid-catalyzed synthesis approach, we are able to obtain the first crystalline 2D COF with stacked hexagonal layers that contains 20 mol% molecular motors. The COF features a specific pore volume and surface area of up to 0.45 cm3 g-1 and 604 m2 g-1, respectively. Given the molecular structure and bulkiness of the diamine motor, we study the supramolecular assembly of the COF layers and detail stacking disorders between adjacent layers. We finally probe the motor dynamics with in situ spectroscopic techniques revealing current limitations in the analysis of these new materials and derive important analysis and design criteria as well as synthetic access to new generations of motorized porous framework materials.

9.
Nat Commun ; 13(1): 1951, 2022 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-35414051

RESUMO

Although light is a prominent stimulus for smart materials, the application of photoswitches as light-responsive triggers for phase transitions of porous materials remains poorly explored. Here we incorporate an azobenzene photoswitch in the backbone of a metal-organic framework producing light-induced structural contraction of the porous network in parallel to gas adsorption. Light-stimulation enables non-invasive spatiotemporal control over the mechanical properties of the framework, which ultimately leads to pore contraction and subsequent guest release via negative gas adsorption. The complex mechanism of light-gated breathing is established by a series of in situ diffraction and spectroscopic experiments, supported by quantum mechanical and molecular dynamic simulations. Unexpectedly, this study identifies a novel light-induced deformation mechanism of constrained azobenzene photoswitches relevant to the future design of light-responsive materials.

10.
Front Chem ; 9: 772059, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34858946

RESUMO

Miniaturization is a key aspect of materials science. Owing to the increase in quality experimental and computational tools available to researchers, it has become clear that the crystal size and morphology of porous framework materials, including metal-organic frameworks and covalent organic frameworks, play a vital role in defining the physicochemical behaviour of these materials. However, given the multiscale and multidisciplinary challenges associated with establishing how crystal size and morphology affect the structure and behaviour of a material-from local to global structural modifications and from static to dynamic effects-a comprehensive mechanistic understanding of size and morphology effects is missing. Herein, we provide our perspective on the current state-of-the-art of this topic, drawn from various complementary disciplines. From a fundamental point of view, we discuss how controlling the crystal size and morphology can alter the mechanical and adsorption properties of porous framework materials and how this can impact phase stability. Special attention is also given to the quest to develop new computational tools capable of modelling these multiscale effects. From a more applied point of view, given the recent progress in this research field, we highlight the importance of crystal size and morphology control in drug delivery. Moreover, we provide an outlook on how to advance each discussed field by size and morphology control, which would open new design opportunities for functional porous framework materials.

11.
Angew Chem Int Ed Engl ; 60(21): 11735-11739, 2021 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-33651917

RESUMO

Herein we demonstrate mesoporous frameworks interacting with carbon dioxide leading to stimulated structural contractions and massive out-of-equilibrium pressure amplification well beyond ambient pressure. Carbon dioxide, a non-toxic and non-flammable working medium, is promising for the development of pressure-amplifying frameworks for pneumatic technologies and safety systems. The strong interaction of the fluid with the framework even contracts DUT-46, a framework hitherto considered as non-flexible. Synchrotron-based in situ PXRD/adsorption experiments reveal the characteristic contraction pressure for DUT-49 pressure amplification in the range of 350-680 kPa. The stimulated framework contraction expels 1.1 to 2.4 mmol g-1 CO2 leading to autonomous pressure amplification in a pneumatic demonstrator system up to 428 kPa. According to system level estimations even higher theoretical pressure amplification may be achieved between 535 and 1011 kPa.

12.
J Am Chem Soc ; 143(11): 4143-4147, 2021 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-33719416

RESUMO

New nanoporous materials have the ability to revolutionize adsorption and separation processes. In particular, materials with adaptive cavities have high selectivity and may display previously undiscovered phenomena, such as negative gas adsorption (NGA), in which gas is released from the framework upon an increase in pressure. Although the thermodynamic driving force behind this and many other counterintuitive adsorption phenomena have been thoroughly investigated in recent years, several experimental observations remain difficult to explain. This necessitates a comprehensive analysis of gas adsorption akin to the conformational free energy landscapes used to understand the function of proteins. We have constructed the complete thermodynamic landscape of methane adsorption on DUT-49. Traversing this complex landscape reproduces the experimentally observed structural transitions, temperature dependence, and the hysteresis between adsorption and desorption. The complete thermodynamic description presented here provides unparalleled insight into adsorption and provides a framework to understand other adsorbents that challenge our preconceptions.

16.
Faraday Discuss ; 225(0): 168-183, 2021 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-33118556

RESUMO

Unusual adsorption phenomena, such as breathing and negative gas adsorption (NGA), are rare and challenge our thermodynamic understanding of adsorption in deformable porous solids. In particular, NGA appears to break the rules of thermodynamics in these materials by exhibiting a spontaneous release of gas accompanying an increase in pressure. This anomaly relies on long-lived metastable states. A fundamental understanding of this process is desperately required for the discovery of new materials with this exotic property. Interestingly, NGA was initially observed upon adsorption of methane at relatively low temperature, close to the respective standard boiling point of the adsorptive, and no NGA was observed at elevated temperatures. In this contribution, we present an extensive investigation of adsorption of an array of gases at various temperatures on DUT-49, a material which features an NGA transition. Experiments, featuring a wide range of gases and vapors at temperatures ranging from 21-308 K, were used to identify for each guest a critical temperature range in which NGA can be detected. The experimental results were complemented by molecular simulations that help to rationalize the absence of NGA at elevated temperatures, and the non-monotonic behavior present upon temperature decrease. Furthermore, this in-depth analysis highlights the crucial thermodynamic and kinetic conditions for NGA, which are unique to each guest and potentially other solids with similar effects. We expect this exploration to provide detailed guidelines for experimentally discovering NGA and related "rule breaking" phenomena in novel and already known materials, and provide the conditions required for the application of this effect, for example as pressure amplifying materials.

18.
Faraday Discuss ; 225: 286-300, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33136105

RESUMO

Molecules in gas and liquid states, as well as in solution, exhibit significant and random Brownian motion. Molecules in the solid-state, although strongly immobilized, can still exhibit significant intramolecular dynamics. However, in most framework materials, these intramolecular dynamics are driven by temperature, and therefore are neither controlled nor spatially or temporarily aligned. In recent years, several examples of molecular machines that allow for a stimuli-responsive control of dynamical motion, such as rotation, have been reported. In this contribution, we investigate the local and global properties of a Lennard-Jones (LJ) fluid surrounding a molecular motor and consider the influence of cooperative and non-directional rotation for a molecular motor-containing pore system. This study uses classical molecular dynamics simulations to describe a minimal model, which was developed to resemble known molecular motors. The properties of an LJ liquid surrounding an isolated molecular motor remain mostly unaffected by the introduced rotation. We then considered an arrangement of motors within a one-dimensional pore. Changes in diffusivity for pore sizes approaching the length of the rotor were observed, resulting from rotation of the motors. We also considered the influence of cooperative motor directionality on the directional transport properties of this confined fluid. Importantly, we discovered that specific unidirectional rotation of altitudinal motors can produce directed diffusion. This study provides an essential insight into molecular machine-containing frameworks, highlighting the specific structural arrangements that can produce directional mass transport.

19.
J Phys Chem Lett ; 11(15): 5856-5862, 2020 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-32615766

RESUMO

Flexible metal-organic frameworks (MOFs) exhibit a variety of phenomena attractive for basic and applied science. DUT-49(Cu) is one of the remarkable representatives of such MOFs, where phase transitions are coupled to pressure amplification and "negative gas adsorption". In this work we report important insights into structural transitions of DUT-49(Cu) upon physi- and chemisorption of gases and volatile liquids obtained by in situ electron paramagnetic resonance (EPR) spectroscopy. In this method, phase transitions are detected via the zero-field splitting in dimeric copper(II) units. First, a new approach was validated upon physisorption of n-butane. Then, using diethyl ether, we for the first time demonstrated that chemisorption can also trigger phase transition in DUT-49(Cu). On the basis of the EPR results, the transition appears completely reversible. The developed EPR-based approach can also be extended to other flexible MOFs containing paramagnetic metal paddlewheels, where high sensitivity and spectral resolution allow in situ studies of stimuli-induced structural variability.

20.
Chem Mater ; 32(11): 4641-4650, 2020 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-32550744

RESUMO

The origin of crystal-size-dependent adsorption behavior of flexible metal-organic frameworks is increasingly studied. In this contribution, we probe the solid-fluid interactions of DUT-49 crystals of different size by in situ 129Xe NMR spectroscopy at 200 K. With decreasing size of the crystals, the average solid-fluid interactions are found to decrease reflected by a decrease in chemical shift of adsorbed xenon from 230 to 200 ppm, explaining the lack of adsorption-induced transitions for smaller crystals. However, recent studies propose that these results can also originate from the presence of lattice defects. To investigate the influence of defects on the adsorption behavior of DUT-49, we synthesized a series of samples with tailored defect concentrations and characterized them by in situ 129Xe NMR. In comparison to the results obtained for crystals with different size, we find pronounced changes of the adsorption behavior and influence of the chemical shift only for very high concentrations of defects, which further emphasizes the important role of particle size phenomena.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...