Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 11(8): e0161960, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27560512

RESUMO

OBJECTIVE: To investigate associations between motor skills, exercise capacity and cognitive functions, and evaluate how they correlate to academic performance in mathematics and reading comprehension using standardised, objective tests. METHODS: This cross-sectional study included 423 Danish children (age: 9.29±0.35 years, 209 girls). Fine and gross motor skills were evaluated in a visuomotor accuracy-tracking task, and a whole-body coordination task, respectively. Exercise capacity was estimated from the Yo-Yo intermittent recovery level 1 children's test (YYIR1C). Selected tests from the Cambridge Neuropsychological Test Automated Battery (CANTAB) were used to assess different domains of cognitive functions, including sustained attention, spatial working memory, episodic and semantic memory, and processing speed. Linear mixed-effects models were used to investigate associations between these measures and the relationship with standard tests of academic performance in mathematics and reading comprehension. RESULTS: Both fine and gross motor skills were associated with better performance in all five tested cognitive domains (all P<0.001), whereas exercise capacity was only associated with better sustained attention (P<0.046) and spatial working memory (P<0.038). Fine and gross motor skills (all P<0.001), exercise capacity and cognitive functions such as working memory, episodic memory, sustained attention and processing speed were all associated with better performance in mathematics and reading comprehension. CONCLUSIONS: The data demonstrate that fine and gross motor skills are positively correlated with several aspects of cognitive functions and with academic performance in both mathematics and reading comprehension. Moreover, exercise capacity was associated with academic performance and performance in some cognitive domains. Future interventions should investigate associations between changes in motor skills, exercise capacity, cognitive functions, and academic performance to elucidate the causality of these associations.


Assuntos
Cognição/fisiologia , Exercício Físico/fisiologia , Matemática , Memória de Curto Prazo/fisiologia , Destreza Motora/fisiologia , Criança , Pré-Escolar , Compreensão/fisiologia , Estudos Transversais , Dinamarca , Avaliação Educacional/métodos , Feminino , Humanos , Masculino , Testes Neuropsicológicos , Leitura
2.
Artigo em Inglês | MEDLINE | ID: mdl-26949378

RESUMO

BACKGROUND: Training camps for top-class endurance athletes place high physiological demands on the body. Focus on optimizing recovery between training sessions is necessary to minimize the risk of injuries and improve adaptations to the training stimuli. Carbohydrate supplementation during sessions is generally accepted as being beneficial to aid performance and recovery, whereas the effect of protein supplementation and timing is less well understood. We studied the effects of protein ingestion during training sessions on performance and recovery of elite cyclists during a strenuous training camp. METHODS: In a randomized, double-blinded study, 18 elite cyclists consumed either a whey protein hydrolysate-carbohydrate beverage (PRO-CHO, 14 g protein/h and 69 g CHO/h) or an isocaloric carbohydrate beverage (CHO, 84 g/h) during each training session for six days (25-29 h cycling in total). Diet and training were standardized and supervised. The diet was energy balanced and contained 1.7 g protein/kg/day. A 10-s peak power test and a 5-min all-out performance test were conducted before and after the first training session and repeated at day 6 of the camp. Blood and saliva samples were collected in the morning after overnight fasting during the week and analyzed for biochemical markers of muscle damage, stress, and immune function. RESULTS: In both groups, 5-min all-out performance was reduced after the first training session and at day 6 compared to before the first training session, with no difference between groups. Peak power in the sprint test did not change significantly between tests or between groups. In addition, changes in markers for muscle damage, stress, and immune function were not significantly influenced by treatment. CONCLUSIONS: Intake of protein combined with carbohydrate during cycling at a training camp for top cyclists did not result in marked performance benefits compared to intake of carbohydrates when a recovery drink containing adequate protein and carbohydrate was ingested immediately after each training session in both groups. These findings suggest that the addition of protein to a carbohydrate supplement consumed during exercise does not improve recovery or performance in elite cyclists despite high demands of daily exhaustive sessions during a one-week training camp.


Assuntos
Atletas , Desempenho Atlético/fisiologia , Ciclismo , Carboidratos da Dieta/metabolismo , Suplementos Nutricionais , Músculo Esquelético/efeitos dos fármacos , Resistência Física/efeitos dos fármacos , Bebidas , Ciclismo/fisiologia , Biomarcadores/metabolismo , Método Duplo-Cego , Humanos , Masculino , Músculo Esquelético/metabolismo , Hidrolisados de Proteína/metabolismo , Fenômenos Fisiológicos da Nutrição Esportiva , Resultado do Tratamento , Proteínas do Soro do Leite/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...