Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(11)2024 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-38891969

RESUMO

The increasing problem of antimicrobial resistance in N. gonorrhoeae necessitates the development of molecular typing schemes that are suitable for rapid and mass screening. The objective of this study was to design and validate a mini-MLST scheme for N. gonorrhoeae based on global pathogen population data. Using sequences of seven housekeeping genes of 21,402 isolates with known MLSTs from the PubMLST database, we identified eighteen informative polymorphisms and obtained mini-MLST nucleotide profiles to predict MLSTs of isolates. We proposed a new MLST grouping system for N. gonorrhoeae based on mini-MLST profiles. Phylogenetic analysis revealed that MLST genogroups are a stable characteristic of the N. gonorrhoeae global population. The proposed grouping system has been shown to bring together isolates with similar antimicrobial susceptibility, as demonstrated by the characteristics of major genogroups. Established MLST prediction algorithms based on nucleotide profiles are now publicly available. The mini-MLST scheme was evaluated using a MLST detection/prediction method based on the original hydrogel DNA microarray. The results confirmed a high predictive ability up to the MLST genogroup. The proposed holistic approach to gonococcal population analysis can be used for the continuous surveillance of known and emerging resistant N. gonorrhoeae isolates.


Assuntos
Gonorreia , Tipagem de Sequências Multilocus , Neisseria gonorrhoeae , Filogenia , Neisseria gonorrhoeae/genética , Neisseria gonorrhoeae/classificação , Tipagem de Sequências Multilocus/métodos , Gonorreia/microbiologia , Gonorreia/diagnóstico , Humanos , Técnicas de Tipagem Bacteriana/métodos
2.
Microorganisms ; 11(6)2023 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-37375049

RESUMO

The aim of this work was to study the genetic diversity of the gonococcal genetic island (GGI) responsible for the type IV secretion system (T4SS) and the association of a functionally active GGI with antimicrobial resistance. An analysis of the GGI in a sample of 14,763 genomes of N. gonorrhoeae isolates from the Pathogenwatch database collected in 1996-2019 from 68 countries was performed. A model of GGI's genetic diversity that divides the global gonococcal population into fifty-one GGI clusters and three GGI superclusters based on the allele type of the traG gene and substitutions of the atlA and ych genes for eppA and ych1 has been proposed, reflecting differences among isolates in the T4SS functionality. The NG-MAST and MLST typing schemes (with accuracies of 91% and 83%, respectively) allowed the determination of both the presence of a GGI and the GGI cluster and, correspondingly, the structure of the GGI and the ability to secrete DNA. A statistically significant difference in the proportion of N. gonorrhoeae isolates resistant to ciprofloxacin, cefixime, tetracycline, and penicillin was found when comparing populations with a functional and a non-functional GGI. The presence of a functional GGI did not affect the proportion of azithromycin-resistant isolates.

3.
Antibiotics (Basel) ; 12(1)2023 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-36671371

RESUMO

The aim of this work was to study the resistance to macrolides (azithromycin) in the modern Russian population of N. gonorrhoeae with the analysis of genetic resistance determinants. Azithromycin is not used to treat gonococcal infection in Russia. However, among 162 isolates collected in 2020-2021, 22 isolates (13.6%) were phenotypically resistant to azithromycin. Mutations in 23S rRNA genes were found only in two isolates; erm and mefA genes were absent. Azithromycin resistance was shown to be predominantly associated with mutations in the mtrR and mtrD genes of the MtrCDE efflux pump and their mosaic alleles which may have formed due to a horizontal transfer from N. meningitidis. A total of 30 types of mtrR alleles and 10 types of mtrD alleles were identified including mosaic variants. Matching between the mtrR and mtrD alleles was revealed to indicate the cooperative molecular evolution of these genes. A link between the mtrR and mtrD alleles and NG-MAST types was found only for NG-MAST 228 and 807, typical of N. gonorrhoeae in Russia. The high level of resistance to azithromycin in Russia may be related to the spread of multiple transferable resistance to antimicrobials regardless of their use in the treatment of gonococcal infection.

4.
Int J Mol Sci ; 23(24)2022 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-36555284

RESUMO

Chromosomal rearrangements in N. gonorrhoeae and N. meningitidis were studied with the determination of mobile elements and their role in rearrangements. The results of whole-genome sequencing and de novo genome assembly for 50 N. gonorrhoeae isolates collected in Russia were compared with 96 genomes of N. gonorrhoeae and 138 genomes of N. meningitidis from the databases. Rearrangement events with the determination of the coordinates of syntenic blocks were analyzed using the SibeliaZ software v.1.2.5, the minimum number of events that allow one genome to pass into another was calculated using the DCJ-indel model using the UniMoG program v.1.0. Population-level analysis revealed a stronger correlation between changes in the gene order and phylogenetic proximity for N. meningitidis in contrast to N. gonorrhoeae. Mobile elements were identified, including Correa elements; Spencer-Smith elements (in N. gonorrhoeae); Neisserial intergenic mosaic elements; IS elements of IS5, IS30, IS110, IS1595 groups; Nf1-Nf3 prophages; NgoФ1-NgoФ9 prophages; and Mu-like prophages Pnm1, Pnm2, MuMenB (in N. meningitidis). More than 44% of the observed rearrangements most likely occurred with the participation of mobile elements, including prophages. No differences were found between the Russian and global N. gonorrhoeae population both in terms of rearrangement events and in the number of transposable elements in genomes.


Assuntos
Gonorreia , Neisseria meningitidis , Humanos , Neisseria gonorrhoeae/genética , Neisseria meningitidis/genética , Filogenia , Gonorreia/genética , Genômica
5.
Front Cell Infect Microbiol ; 12: 831336, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35252037

RESUMO

Comparative whole-genome analysis was performed for Neisseria gonorrhoeae isolates belonging to the Neisseria gonorrhoeae multiantigen sequence typing (NG-MAST) types predominant worldwide - 225, 1407, 2400, 2992, and 4186 - and to genogroup 807, the most common genogroup in the Russian Federation. Here, for the first time, the complete genomes of 25 N. gonorrhoeae isolates from genogroup 807 were obtained. For NG-MAST types 225, 1407, 2400, 2992, and 4186, genomes from the Pathogenwatch database were used. The phylogenetic network constructed for 150 genomes showed that the clustering according to NG-MAST type corresponded to the clustering according to genome. Comparisons of genomes of the six sequence types revealed 8-20 genes specific to each sequence type, including the loci for phase variations and genetic components of the gonococcal genetic island (GGI). NG-MAST type 2992 and 4186 isolates either lacked the GGI or carried critical mutations in genes essential for DNA secretion. In all analyzed genogroup 807 isolates, substitution of the essential atlA gene with the eppA gene was found, accompanied by a change in the traG allele, replacement of the ych gene with ych1, and the absence of the exp1 gene, which is likely to result in loss of GGI functionality. For the NG-MAST type 225, 1407 and 2400 isolates, no premature stop codons or reading frameshifts were found in the genes essential for GGI function. A relationship between isolate susceptibility to ciprofloxacin, penicillin, tetracycline and the presence of lesions in GGI genes necessary for DNA secretion was established. The N. gonorrhoeae evolutionary pathways, which allow a particular sequence type to maintain long-term predominance in the population, may include changes in genes responsible for adhesion and virulence, changes in the GGI structure, preservation of genes carrying drug resistance determinants, and changes in genes associated with host adaptation or encoding enzymes of biochemical pathways.


Assuntos
Antibacterianos , Neisseria gonorrhoeae , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Farmacorresistência Bacteriana/genética , Testes de Sensibilidade Microbiana , Filogenia
6.
Polymers (Basel) ; 13(22)2021 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-34833187

RESUMO

A multiplex assay based on a low-density hydrogel microarray was developed to identify genomic substitutions in N. gonorrhoeae that determine resistance to the currently recommended treatment agents ceftriaxone and azithromycin and the previously used drugs penicillin, tetracycline, and ciprofloxacin. The microarray identifies 74 drug resistance determinants in the N. gonorrhoeae penA, ponA, porB, gyrA, parC, rpsJ, mtrR, blaTEM, tetM, and 23S rRNA genes. The hydrogel elements were formed by automated dispensing of nanoliter-volume droplets followed by UV-induced copolymerization of NH2-containing oligonucleotides with gel-forming monomers. Polybutylene terephthalate plates without special modifications were used as microarray substrates. Sequences and concentrations of immobilized oligonucleotides, gel composition, and hybridization conditions were carefully selected, and the median discrimination ratio ranged from 2.8 to 29.4, allowing unambiguous identification of single-nucleotide substitutions. The mutation identification results in a control sample of 180 N. gonorrhoeae isolates were completely consistent with the Sanger sequencing results. In total, 648 clinical N. gonorrhoeae isolates obtained in Russia during the last 5 years were analyzed and genotyped using these microarrays. The results allowed us to draw conclusions about the present situation with antimicrobial susceptibility of N. gonorrhoeae in Russia and demonstrated the possibility of using hydrogel microarrays to control the spread of antibiotic resistance.

7.
J Antimicrob Chemother ; 76(12): 3151-3158, 2021 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-34458918

RESUMO

BACKGROUND: Decreased susceptibility of Neisseria gonorrhoeae to extended-spectrum cephalosporins is a major concern. Elucidation of the phenotypic and genetic characteristics of such isolates is a priority task. METHODS: We developed a method for predicting the N. gonorrhoeae ceftriaxone susceptibility level (MICcro) by identifying genetic determinants of resistance using low-density hydrogel microarrays and a regression equation. A training dataset, containing 5631 isolates from the Pathogenwatch database and 181 isolates obtained in the Russian Federation during 2018-19, was used to build a regression model. The regression equation was tested on 14 WHO reference strains. Ceftriaxone resistance determinants for the 448 evaluated clinical isolates collected in Russia were identified using microarray analysis, and MICcro values were calculated using the regression equation and compared with those measured by the serial dilution method. RESULTS: The regression equation for calculating MICcro values included 20 chromosomal resistance determinants. The greatest contributions to the increase in MICcro were shown to be PBP2: Ala-501→Pro, Ala-311→Val, Gly-545→Ser substitutions, Asp(345-346) insertion; and PorB: Gly-120→Arg substitution. The substitutions PBP2: Ala-501→Thr/Val, PorB: Gly-120→Asn/Asp/Lys and PBP1: Leu-421→Pro had weaker effects. For 94.4% of the isolates in the evaluation set, the predicted MICcro was within one doubling dilution of the experimentally determined MICcro. No ceftriaxone-resistant isolates were identified in the analysed samples from Russia, and no interpretative errors were detected in the MICcro calculations. CONCLUSIONS: The developed strategy for predicting ceftriaxone MIC can be used for the continuous surveillance of known and emerging resistant N. gonorrhoeae isolates.


Assuntos
Gonorreia , Neisseria gonorrhoeae , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Ceftriaxona/farmacologia , Gonorreia/tratamento farmacológico , Humanos , Testes de Sensibilidade Microbiana , Neisseria gonorrhoeae/genética , Análise de Sequência com Séries de Oligonucleotídeos , Análise de Regressão , Tecnologia
8.
Pathogens ; 9(11)2020 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-33198126

RESUMO

This work aimed to study penA gene polymorphisms in clinical isolates of Neisseria gonorrhoeae collected in Russia in 2018-2019 and the contribution of the penA allele type to susceptibility to ß-lactam antibiotics. A total of 182 isolates were analyzed. penA allele types were determined by sequencing, and the minimum inhibitory concentrations (MICs) of benzylpenicillin and ceftriaxone were measured. The influence of genetic factors on MICs was evaluated by regression analysis. All isolates were susceptible to ceftriaxone, and 40.1% of isolates were susceptible to penicillin. Eleven penA allele types were identified. The mosaic type XXXIV penA allele and the Gly120Lys substitution in PorB made the greatest contributions to increasing the ceftriaxone MIC; the presence of the blaTEM plasmid, Gly120Asp, Ala121Gly/Asn substitutions in PorB, and the adenine deletion in the promoter region of the mtrR gene caused an increase in the penicillin MIC. Among 61 NG-MAST types identified, the most frequent were types 228, 807, 9486, 1993, and 6226. A link between penA alleles and Neisseria gonorrhoeae multi-antigen sequence typing (NG-MAST) types was established. Resistance to two groups of ß-lactam antibiotics was associated with non-identical changes in penA alleles. To prevent the emergence of ceftriaxone resistance in Russia, NG-MAST genotyping must be supplemented with penA allele analysis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...