Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Annu Rev Neurosci ; 42: 365-383, 2019 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-30939099

RESUMO

The structural and functional properties of neurons have intrigued scientists since the pioneering work of Santiago Ramón y Cajal. Since then, emerging cutting-edge technologies, including light and electron microscopy, electrophysiology, biochemistry, optogenetics, and molecular biology, have dramatically increased our understanding of dendritic properties. This advancement was also facilitated by the establishment of different animal model organisms, from flies to mammals. Here we describe the emerging model system of a Caenorhabditis elegans polymodal neuron named PVD, whose dendritic tree follows a stereotypical structure characterized by repeating candelabra-like structural units. In the past decade, progress has been made in understanding PVD's functions, morphogenesis, regeneration, and aging, yet many questions still remain.


Assuntos
Envelhecimento , Dendritos/patologia , Neurônios/patologia , Regeneração/fisiologia , Animais , Caenorhabditis elegans/fisiologia , Humanos , Células Receptoras Sensoriais
2.
Development ; 144(13): 2364-2374, 2017 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-28576774

RESUMO

The aging brain undergoes structural changes that affect brain homeostasis, neuronal function and consequently cognition. The complex architecture of dendritic arbors poses a challenge to understanding age-dependent morphological alterations, behavioral plasticity and remodeling following brain injury. Here, we use the PVD polymodal neurons of C. elegans as a model to study how aging affects neuronal plasticity. Using confocal live imaging of C. elegans PVD neurons, we demonstrate age-related progressive morphological alterations of intricate dendritic arbors. We show that mutations in daf-2, which encodes an insulin-like growth factor receptor ortholog, fail to inhibit the progressive morphological aging of dendrites and do not prevent the minor decline in response to harsh touch during aging. We uncovered that PVD aging is characterized by a major decline in the regenerative potential of dendrites following experimental laser dendrotomy. Furthermore, the remodeling of transected dendritic trees by AFF-1-mediated self-fusion can be restored in old animals by daf-2 mutations, and can be differentially re-established by ectopic expression of the fusion protein AFF-1. Thus, ectopic expression of the fusogen AFF-1 in the PVD and mutations in daf-2 differentially rejuvenate some aspects of dendritic regeneration following injury.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Dendritos/metabolismo , Regeneração , Envelhecimento/metabolismo , Animais , Fusão Celular , Insulina/metabolismo , Fator de Crescimento Insulin-Like I/metabolismo , Larva/metabolismo , Modelos Biológicos , Mutação/genética , Transdução de Sinais
3.
Genetics ; 206(1): 215-230, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28283540

RESUMO

Injury triggers regeneration of axons and dendrites. Research has identified factors required for axonal regeneration outside the CNS, but little is known about regeneration triggered by dendrotomy. Here, we study neuronal plasticity triggered by dendrotomy and determine the fate of complex PVD arbors following laser surgery of dendrites. We find that severed primary dendrites grow toward each other and reconnect via branch fusion. Simultaneously, terminal branches lose self-avoidance and grow toward each other, meeting and fusing at the tips via an AFF-1-mediated process. Ectopic branch growth is identified as a step in the regeneration process required for bypassing the lesion site. Failure of reconnection to the severed dendrites results in degeneration of the distal end of the neuron. We discover pruning of excess branches via EFF-1 that acts to recover the original wild-type arborization pattern in a late stage of the process. In contrast, AFF-1 activity during dendritic auto-fusion is derived from the lateral seam cells and not autonomously from the PVD neuron. We propose a model in which AFF-1-vesicles derived from the epidermal seam cells fuse neuronal dendrites. Thus, EFF-1 and AFF-1 fusion proteins emerge as new players in neuronal arborization and maintenance of arbor connectivity following injury in Caenorhabditis elegans Our results demonstrate that there is a genetically determined multi-step pathway to repair broken dendrites in which EFF-1 and AFF-1 act on different steps of the pathway. EFF-1 is essential for dendritic pruning after injury and extrinsic AFF-1 mediates dendrite fusion to bypass injuries.


Assuntos
Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/genética , Glicoproteínas de Membrana/genética , Regeneração/genética , Animais , Animais Geneticamente Modificados , Axônios/metabolismo , Axônios/patologia , Caenorhabditis elegans/crescimento & desenvolvimento , Dendritos/genética , Dendritos/patologia , Plasticidade Neuronal/genética , Células Receptoras Sensoriais/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...