Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Data ; 9(1): 594, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-36182956

RESUMO

Corynebacterium glutamicum is the major host for the industrial production of amino acids and has become one of the best studied model organisms in microbial biotechnology. Rational strain construction has led to an improvement of producer strains and to a variety of novel producer strains with a broad substrate and product spectrum. A key factor for the success of these approaches is detailed knowledge of transcriptional regulation in C. glutamicum. Here, we present a large compendium of 927 manually curated microarray-based transcriptional profiles for wild-type and engineered strains detecting genome-wide expression changes of the 3,047 annotated genes in response to various environmental conditions or in response to genetic modifications. The replicates within the 927 experiments were combined to 304 microarray sets ordered into six categories that were used for differential gene expression analysis. Hierarchical clustering confirmed that no outliers were present in the sets. The compendium provides a valuable resource for future fundamental and applied research with C. glutamicum and contributes to a systemic understanding of this microbial cell factory. Measurement(s) Gene Expression Analysis Technology Type(s) Two Color Microarray Factor Type(s) WT condition A vs. WT condition B • Plasmid-based gene overexpression in parental strain vs. parental strain with empty vector control • Deletion mutant vs. parental strain Sample Characteristic - Organism Corynebacterium glutamicum Sample Characteristic - Environment laboratory environment Sample Characteristic - Location Germany.


Assuntos
Corynebacterium glutamicum , Aminoácidos , Corynebacterium glutamicum/genética , Corynebacterium glutamicum/metabolismo , Alemanha
2.
Proc Natl Acad Sci U S A ; 117(19): 10234-10245, 2020 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-32341157

RESUMO

The nitrogen-related phosphotransferase system (PTSNtr) of Rhizobium leguminosarum bv. viciae 3841 transfers phosphate from PEP via PtsP and NPr to two output regulators, ManX and PtsN. ManX controls central carbon metabolism via the tricarboxylic acid (TCA) cycle, while PtsN controls nitrogen uptake, exopolysaccharide production, and potassium homeostasis, each of which is critical for cellular adaptation and survival. Cellular nitrogen status modulates phosphorylation when glutamine, an abundant amino acid when nitrogen is available, binds to the GAF sensory domain of PtsP, preventing PtsP phosphorylation and subsequent modification of ManX and PtsN. Under nitrogen-rich, carbon-limiting conditions, unphosphorylated ManX stimulates the TCA cycle and carbon oxidation, while unphosphorylated PtsN stimulates potassium uptake. The effects are reversed with the phosphorylation of ManX and PtsN, occurring under nitrogen-limiting, carbon-rich conditions; phosphorylated PtsN triggers uptake and nitrogen metabolism, the TCA cycle and carbon oxidation are decreased, while carbon-storage polymers such as surface polysaccharide are increased. Deleting the GAF domain from PtsP makes cells "blind" to the cellular nitrogen status. PTSNtr constitutes a switch through which carbon and nitrogen metabolism are rapidly, and reversibly, regulated by protein:protein interactions. PTSNtr is widely conserved in proteobacteria, highlighting its global importance.


Assuntos
Proteínas de Bactérias/metabolismo , Carbono/metabolismo , Regulação Bacteriana da Expressão Gênica , Nitrogênio/metabolismo , Fosfatos/metabolismo , Sistema Fosfotransferase de Açúcar do Fosfoenolpiruvato/metabolismo , Rhizobium leguminosarum/metabolismo , Proteínas de Bactérias/genética , Ciclo do Ácido Cítrico , Sistema Fosfotransferase de Açúcar do Fosfoenolpiruvato/genética , Fosforilação , Regiões Promotoras Genéticas , Rhizobium leguminosarum/genética , Rhizobium leguminosarum/crescimento & desenvolvimento
3.
BMC Microbiol ; 19(1): 179, 2019 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-31382874

RESUMO

BACKGROUND: Key mechanisms of cell division and its regulation are well understood in model bacteria such as Escherichia coli and Bacillus subtilis. In contrast, current knowledge on the regulation of cell division in Actinobacteria is rather limited. FtsZ is one of the key players in this process, but nothing is known about its transcriptional regulation in Corynebacterium glutamicum, a model organism of the Corynebacteriales. RESULTS: In this study, we used DNA affinity chromatography to search for transcriptional regulators of ftsZ in C. glutamicum and identified the Cg1631 protein as candidate, which was named FtsR. Both deletion and overexpression of ftsR caused growth defects and an altered cell morphology. Plasmid-based expression of native ftsR or of homologs of the pathogenic relatives Corynebacterium diphtheriae and Mycobacterium tuberculosis in the ΔftsR mutant could at least partially reverse the mutant phenotype. Absence of ftsR caused decreased expression of ftsZ, in line with an activator function of FtsR. In vivo crosslinking followed by affinity purification of FtsR and next generation sequencing of the enriched DNA fragments confirmed the ftsZ promoter as in vivo binding site of FtsR and revealed additional potential target genes and a DNA-binding motif. Analysis of strains expressing ftsZ under control of the gluconate-inducible gntK promoter revealed that the phenotype of the ΔftsR mutant is not solely caused by reduced ftsZ expression, but involves further targets. CONCLUSIONS: In this study, we identified and characterized FtsR as the first transcriptional regulator of FtsZ described for C. glutamicum. Both the absence and the overproduction of FtsR had severe effects on growth and cell morphology, underlining the importance of this regulatory protein. FtsR and its DNA-binding site in the promoter region of ftsZ are highly conserved in Actinobacteria, which suggests that this regulatory mechanism is also relevant for the control of cell division in related Actinobacteria.


Assuntos
Actinobacteria/genética , Proteínas de Bactérias , Divisão Celular/genética , Corynebacterium glutamicum/genética , Proteínas do Citoesqueleto , Regulação Bacteriana da Expressão Gênica/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Corynebacterium glutamicum/citologia , Corynebacterium glutamicum/crescimento & desenvolvimento , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/metabolismo , Genes Bacterianos , Mycobacterium tuberculosis/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...