Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Opt Express ; 30(26): 46693-46709, 2022 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-36558615

RESUMO

In silicon and other photonic integrated circuit platforms many devices exhibit a large polarization dependency, therefore a polarization beam splitter (PBS) is an essential building block to split optical signal to transversal electric (TE) and transversal magnetic (TM) modes. In this paper we propose a concept of integrated silicon-based PBS exploiting unique properties of all dielectric metamaterial cladding to achieve a high extinction ratio (ER) and wide bandwidth (BW) polarization splitting characteristics. We start from a structure (PBS-1) based on a directional coupler with metamaterial cladding combined with a bent waveguide with metamaterial cladding at the outer side in the role of a TE polarizer at the Thru port of the device. To increase BW we propose the improved concept (PBS-2) - a metamaterial compact dual Mach-Zehnder Interferometer structure in combination with the TE polarizer. Numerical simulations reveal that an exceptionally high ER over 35 dB can be achieved in a BW of 263 nm with insertion loss (IL) below 1 dB in case of PBS-2. The designed device has a footprint of 82 µm. Measurement results reveal that an ER > 30 dB is achievable in a BW of at least 140 nm (limited by the laser tuning range).

2.
Opt Express ; 29(15): 23701-23716, 2021 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-34614630

RESUMO

Hierarchical textures (combining 2D periodic large and small micro textures) as an external outcoupling solution for OLEDs have been researched, both experimentally and by optical simulations. For the case of a red bottom emitting OLED, different hierarchical textures were fabricated using laser-based methods and a replication step and applied to the OLED substrate, resulting in an increased light outcoupling. Laboratory-size OLED devices with applied textured foils show a smaller increase in efficiency compared to the final large area devices. The results show that the full exploitation of textured foils in laboratory-size samples is mainly limited by the lateral size of the thin film stack area and by limited light collection area of the measuring equipment. Modeling and simulations are used to further evaluate the full prospective of hierarchical textures in large area OLED devices. Optimization of hierarchical textures is done by simultaneously changing the aspect ratios of the small and large textures and a potential of 57% improvement in EQE compared to devices without applied textures is predicted by simulations. Optimized hierarchical textures show similar outcoupling efficiencies compared to optimized single textures, while on the other hand hierarchical textures require less pronounced features, lower aspect ratios, compared to single textures to achieve the same efficiencies. Hierarchical textures also help in eliminating flat parts that limit outcoupling efficiency. Finally, the limiting factors that prevent higher outcoupling are addressed. We show that the dominant factor is non-ideal reflection from the organic thin film stack due to parasitic absorption. In addition, possible ways to further increase the outcoupling from a thick substrate are indicated.

3.
Opt Express ; 27(20): A1554-A1568, 2019 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-31684506

RESUMO

For advanced optical analysis and optimization of solar cell structures with multi-scale interface textures, we applied a coupled modelling approach (CMA), where we couple the rigorous coupled wave analysis method with ray tracing and transfer matrix method. Coupling of the methods enables accurate optical analysis of solar cells made of thin coherent and thick incoherent layers and includes combinations of nano- and micro-scale textures at various positions in the structure. The approach is experimentally validated on standalone single- and both-side textured crystalline silicon wafers, as well as on complete silicon heterojunction (Si HJ) solar cell structures. Using CMA, fully encapsulated bifacial Si HJ solar cells are optically simulated first by applying single- and both-side illumination, and the effects of introducing nano inverted pyramids and random micro-pyramids at front and/or rear interfaces are analyzed. Secondly, an external light management foil with a three-sided pyramidal micro-texture is applied in simulations to the front and/or rear encapsulation glass, and the related improvements are quantified. For the optimal combination of internal textures in the analyzed structure (random micro-pyramids at the front and nano inverted pyramids at the back) and the use of the light management foil on both sides of the device, a 5.6% gain in the short-circuit current is predicted, compared to the reference case with no light management foil and with random micro-pyramids applied to the front and rear internal interfaces.

4.
Beilstein J Nanotechnol ; 9: 2315-2329, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30202700

RESUMO

A variety of light management structures have been introduced in solar cells to improve light harvesting and further boost their conversion efficiency. Reliable and accurate simulation tools are required to design and optimize the individual structures and complete devices. In the first part of this paper, we analyze the performance of rigorous coupled-wave analysis (RCWA) for accurate three-dimensional optical simulation of solar cells, in particular heterojunction silicon (HJ Si) solar cells. The structure of HJ Si solar cells consists of thin and thick layers, and additionally, micro- and nano-textures are also introduced to further exploit the potential of light trapping. The RCWA was tested on the front substructure of the solar cell, including the texture, thin passivation and contact layers. Inverted pyramidal textures of different sizes were included in the simulations. The simulations rapidly converge as long as the textures are small (in the (sub)micrometer range), while for larger microscale textures (feature sizes of a few micrometers), this is not the case. Small textures were optimized to decrease the reflectance, and consequently, increase the absorption in the active layers of the solar cell. Decreasing the flat parts of the texture was shown to improve performance. For simulations of structures with microtextures, and for simulations of complete HJ Si cells, we propose a coupled modeling approach (CMA), where the RCWA is coupled with raytracing and the transfer matrix method. By means of CMA and nanotexture optimization, we show the possible benefits of nanotextures at the front interface of HJ Si solar cells, demonstrating a 13.4% improvement in the short-circuit current density with respect to the flat cell and 1.4% with respect to the cell with double-sided random micropyramids. We additionally demonstrate the ability to simulate a combination of nano- and microtextures at a single interface, although the considered structure did not show an improvement over the pyramidal textures.

5.
Opt Express ; 25(4): A176-A190, 2017 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-28241559

RESUMO

We present detailed numerical and experimental investigation of thin-film organic solar cells with a micro-textured light management foil applied on top of the front glass substrate. We first demonstrate that measurements of small-area laboratory solar cells are susceptible to a significant amount of optical losses that could lead to false interpretation of the measurement results. Using the combined optical model CROWM calibrated with realistic optical properties of organic films and other layers, we identify the origins of these losses and quantify the extent of their influence. Further on, we identify the most important light management mechanisms of the micro-textured foil, among which the prevention of light escaping at the front side of the cell is revealed as the dominant one. Detailed three-dimensional simulations show that the light-management foil applied on top of a large-area organic solar cell can reduce the total reflection losses by nearly 60% and improve the short-circuit current density by almost 20%. Finally, by assuming realistic open-circuit voltage and especially the realistic fill factor that deteriorates as the absorber layer thickness is increased, we determine the optimal absorber layer thickness that would result in the highest power conversion efficiency of the investigated organic solar cells.

6.
J Environ Manage ; 180: 68-81, 2016 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-27208996

RESUMO

Complex policy-making situations around bioenergy production and use require examination of the operational environment of the society and a participatory approach. This paper presents and demonstrates a three-phase decision-making framework for analysing the operational environment of strategies related to increased forest bioenergy targets. The framework is based on SWOT (strengths, weaknesses, opportunities and threats) analysis and the Simple Multi-Attribute Rating Technique (SMART). Stakeholders of four case countries (Finland, Germany, Norway and Slovenia) defined the factors that affect the operational environments, classified in four pre-set categories (Forest Characteristics and Management, Policy Framework, Technology and Science, and Consumers and Society). The stakeholders participated in weighting of SWOT items for two future scenarios with SMART technique. The first scenario reflected the current 2020 targets (the Business-as-Usual scenario), and the second scenario contained a further increase in the targets (the Increase scenario). This framework can be applied to various problems of environmental management and also to other fields where public decision-making is combined with stakeholders' engagement. The case results show that the greatest differences between the scenarios appear in Germany, indicating a notably negative outlook for the Increase scenario, while the smallest differences were found in Finland. Policy Framework was a highly rated category across the countries, mainly with respect to weaknesses and threats. Intensified forest bioenergy harvesting and utilization has potentially wide country-specific impacts which need to be anticipated and considered in national policies and public dialogue.


Assuntos
Biocombustíveis , Técnicas de Apoio para a Decisão , Agricultura Florestal/métodos , Florestas , Tomada de Decisões , Política Ambiental , Finlândia , Alemanha , Humanos , Noruega , Formulação de Políticas , Eslovênia
7.
Opt Express ; 23(24): A1549-63, 2015 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-26698803

RESUMO

Finite element method is coupled with Huygens' expansion to determine light intensity distribution of scattered light in solar cells and other optoelectronic devices. The rigorous foundation of the modelling enables calculation of the light intensity distribution at a chosen distance and surface of observation in chosen material in reflection or in transmission for given wavelength of the incident light. The calculation of scattering or anti-reflection properties is not limited to a single textured interface, but can be done above more complex structures with several scattering interfaces or even with particles involved. Both scattering at periodic and at random textures can be efficiently handled with the modelling approach. A procedure for minimisation of the effect of small-area sample, which is considered in the finite element method calculation, is proposed and implemented into the modelling. Angular distribution function, total transmission and total reflection of the scattering interface or structure can be determined using the model. Furthermore, a method for calculation of the haze parameter of reflected or transmitted light is proposed. The modelling approach is applied to periodic and random nano-textured samples for photovoltaic applications, showing good agreement with measured data.

8.
Opt Express ; 23(15): A882-95, 2015 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-26367688

RESUMO

We developed an optical model for simulation and optimization of luminescent down-shifting (LDS) layers for photovoltaics. These layers consist of micron-sized phosphor particles embedded in a polymer binder. The model is based on ray tracing and employs an effective approach to scattering and photoluminescence modelling. Experimental verification of the model shows that the model accurately takes all the structural parameters and material properties of the LDS layers into account, including the layer thickness, phosphor particle volume concentration, and phosphor particle size distribution. Finally, using the verified model, complete organic solar cells on glass substrate covered with the LDS layers are simulated. Simulations reveal that an optimized LDS layer can result in more than 6% larger short-circuit current of the solar cell.

9.
Opt Express ; 23(7): A263-78, 2015 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-25968792

RESUMO

In this study we analyze and discuss the optical properties of various tandem architectures: mechanically stacked (four-terminal) and monolithically integrated (two-terminal) tandem devices, consisting of a methyl ammonium lead triiodide (CH(3)NH(3)PbI(3)) perovskite top solar cell and a crystalline silicon bottom solar cell. We provide layer thickness optimization guidelines and give estimates of the maximum tandem efficiencies based on state-of-the-art sub cells. We use experimental complex refractive index spectra for all involved materials as input data for an in-house developed optical simulator CROWM. Our characterization based simulations forecast that with optimized layer thicknesses the four-terminal configuration enables efficiencies over 30%, well above the current single-junction crystalline silicon cell record of 25.6%. Efficiencies over 30% can also be achieved with a two-terminal monolithic integration of the sub-cells, combined with proper selection of layer thicknesses.

10.
ACS Appl Mater Interfaces ; 6(24): 22061-8, 2014 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-25418361

RESUMO

Thin-film silicon solar cells are often deposited on textured ZnO substrates. The solar-cell performance is strongly correlated to the substrate morphology, as this morphology determines light scattering, defective-region formation, and crystalline growth of hydrogenated nanocrystalline silicon (nc-Si:H). Our objective is to gain deeper insight in these correlations using the slope distribution, rms roughness (σ(rms)) and correlation length (lc) of textured substrates. A wide range of surface morphologies was obtained by Ar plasma treatment and wet etching of textured and flat-as-deposited ZnO substrates. The σ(rms), lc and slope distribution were deduced from AFM scans. Especially, the slope distribution of substrates was represented in an efficient way that light scattering and film growth direction can be more directly estimated at the same time. We observed that besides a high σ(rms), a high slope angle is beneficial to obtain high haze and scattering of light at larger angles, resulting in higher short-circuit current density of nc-Si:H solar cells. However, a high slope angle can also promote the creation of defective regions in nc-Si:H films grown on the substrate. It is also found that the crystalline fraction of nc-Si:H solar cells has a stronger correlation with the slope distributions than with σ(rms) of substrates. In this study, we successfully correlate all these observations with the solar-cell performance by using the slope distribution of substrates.

11.
Appl Opt ; 53(21): 4795-803, 2014 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-25090220

RESUMO

We present a system for the measurement of the three-dimensional (3D) angular distribution function (ADF) of scattered or emitted light using a digital camera. The 3D ADF can be determined from the digital image captured from a reflective flat screen. With the developed camera-based system we can quantify the transmitted light scattered by textured samples or the light emitted from light sources in a few second's time. In the paper, the setup of the camera-based system is presented, the main transformations of the acquired digital image to obtain the 3D ADF are explained, and sensitivity issues are discussed. The system is applied to and validated on randomly nanotextured transparent samples and a calibrated light emitting device. Good matching is obtained with the measurements carried out with a conventional goniometric angular resolved scattering system.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA