Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
J Environ Manage ; 362: 121351, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38838535

RESUMO

In this study, the growth of yeast and yeast-like fungi in the liquid digestate from vegetable wastes was investigated in order to remove nutrients and organic pollutants, and for their application as co-culture members with green microalgae. The studied yeast strains were characterized for their assimilative and enzymatic profiles as well as temperature requirements. In the first experimental stage, the growth dynamics of each strain were determined, allowing to select the best yeasts for further studies. In the subsequent stage, the ability of selectants to remove organic pollutants was assessed. Different cultivation media containing respectively 1:3, 1:1, 3:1 vol ratio of liquid digestate and the basal minimal medium were used. Among all tested yeast strains, Rhodotorula mucilaginosa DSM 70825 showed the most promising results, demonstrating the highest potential for removing organic substrates and nutrients. Depending on the medium, this strain achieved 50-80% sCOD, 45-60% tVFAs, 21-45% TN, 33-52% PO43- reduction rates. Similar results were obtained for the strain Candida sp. OR687571. The high nutrient and organics removal efficiency by these yeasts could likely be linked to their ability to assimilate xylose (being the main source of carbon in the liquid digestate). In culture media containing liquid digestate, both yeast strains achieved good viability and proliferation potential. In the liquid digestate medium, R. mucilaginosa and Candida sp. showed vitality at the level of 51.5% and 45.0%, respectively. These strains seem to be a good starting material for developing effective digestate treatment strategies involving monocultures and/or consortia with other yeasts or green microalgae.


Assuntos
Técnicas de Cocultura , Microalgas , Leveduras , Microalgas/crescimento & desenvolvimento , Microalgas/metabolismo , Leveduras/metabolismo , Leveduras/crescimento & desenvolvimento , Rhodotorula/metabolismo , Rhodotorula/crescimento & desenvolvimento , Nutrientes/metabolismo , Biodegradação Ambiental , Candida/crescimento & desenvolvimento , Candida/metabolismo
2.
Materials (Basel) ; 16(22)2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-38005113

RESUMO

Cotton and poly(ethylene terephthalate) (PET) woven fabrics were coated with graphene oxide (GO) using a padding method and the GO deposited on the fiber surfaces was thermally reduced to impart electrical conductivity to the fabrics. To assist the thermal reduction of GO, quercetin (Q)-a natural flavonoid-was used. To this end, before the reduction, the GO-padded fabrics were immersed in Q solutions in ethanol with different Q concentrations. Q enhanced the thermal reduction of GO. Depending on the Q concentration in the solutions, electrical surface resistivities of the cotton fabric of 750 kΩ/sq to 3.3 MΩ/sq and of the PET fabric of 240 kΩ/sq to 730 kΩ/sq were achieved. The cotton and PET fabrics also became hydrophobic, with water contact angles of 163° and 147°, respectively. In addition to the electrical conductivity, the presence of Q resulted in antibacterial activity of the fabrics against Escherichia coli and Staphylococcus aureus.

3.
Int J Mol Sci ; 24(20)2023 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-37894841

RESUMO

This work presents the results of research on obtaining chitosan (CS) films containing on their surface ciprofloxacin (CIP). A unique structure was obtained that not only gives new properties to the films, but also changes the way of coverage and structure of the surface. The spectroscopic test showed that in the process of application of CIP on the surface of CS film, CIP was converted from its crystalline form to an amorphic one, hence improving its bioavailability. This improved its scope of microbiological effect. The research was carried out on the reduction of CIP concentration during the process of CIP adhesion to the surface of chitosan films. The antibacterial activity of the CS films with and without the drug was evaluated in relation to Escherichia coli and Staphylococcus aureus, as well as Candida albicans and Penicillium expansum. Changes in the morphology and roughness of membrane surfaces after the antibacterial molecule adhesion process were tested with atomic force microscopy (AFM) and scanning electron microscopy (SEM). Structural analysis of CS and its modifications were confirmed with Fourier-transform spectroscopy in the infrared by an attenuated total reflectance of IR radiation (FTIR-ATR) and solid-state nuclear magnetic resonance (NMR).


Assuntos
Quitosana , Quitosana/química , Ciprofloxacina/farmacologia , Ciprofloxacina/química , Espectroscopia de Infravermelho com Transformada de Fourier , Antibacterianos/química , Espectroscopia de Ressonância Magnética
4.
Molecules ; 28(13)2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37446724

RESUMO

Candidiasis is one of the most frequent infections worldwide. In this study, the antimicrobial properties of six strains belonging to the Metschnikowia pulcherrima clade were evaluated against twenty Candida and Candida-related Filobasidiella neoformans var. bacillispora (syn. Cryptococcus neoformans) of different origins, employing the agar cross method. The toxic effect of pulcherrimin, a red metabolite that is responsible for the antimicrobial activities of Metschnikowia spp., was evaluated in various experimental models. The results of agar tests showed that the selected M. pulcherrima strains inhibited the growth of the Candida and non-Candida strains. However, inhibition was dependent on the strain and the environment. The presence of peptone, sodium silicate, and a higher incubation temperature decreased the antifungal action of the M. pulcherrima strains. Pulcherrimin showed cytotoxic and antiproliferative activity, with oxidative stress in cells leading to apoptosis. More research is needed on the mechanism of action of pulcherrimin on somatic cells.


Assuntos
Anti-Infecciosos , Metschnikowia , Candida , Metschnikowia/fisiologia , Ágar , Antifúngicos/farmacologia , Antifúngicos/metabolismo , Anti-Infecciosos/farmacologia
5.
Molecules ; 28(5)2023 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-36903310

RESUMO

An example of the implementation of the principles of the circular economy is the use of sugar beet pulp as animal feed. Here, we investigate the possible use of yeast strains to enrich waste biomass in single-cell protein (SCP). The strains were evaluated for yeast growth (pour plate method), protein increment (Kjeldahl method), assimilation of free amino nitrogen (FAN), and reduction of crude fiber content. All the tested strains were able to grow on hydrolyzed sugar beet pulp-based medium. The greatest increases in protein content were observed for Candida utilis LOCK0021 and Saccharomyces cerevisiae Ethanol Red (ΔN = 2.33%) on fresh sugar beet pulp, and for Scheffersomyces stipitis NCYC1541 (ΔN = 3.04%) on dried sugar beet pulp. All the strains assimilated FAN from the culture medium. The largest reductions in the crude fiber content of the biomass were recorded for Saccharomyces cerevisiae Ethanol Red (Δ = 10.89%) on fresh sugar beet pulp and Candida utilis LOCK0021 (Δ = 15.05%) on dried sugar beet pulp. The results show that sugar beet pulp provides an excellent matrix for SCP and feed production.


Assuntos
Beta vulgaris , Saccharomyces cerevisiae , Animais , Saccharomyces cerevisiae/metabolismo , Beta vulgaris/química , Verduras/metabolismo , Ração Animal , Etanol/metabolismo , Açúcares/metabolismo
6.
Artigo em Inglês | MEDLINE | ID: mdl-36982130

RESUMO

The potato is a crop of global importance for the food industry. This is why effective protection against pathogens is so important. Fungi as potato pathogens are responsible for plant diseases and a significant reduction in yields, as well as for the formation of mycotoxins. This study focuses on the effect of three natural biocides, yeast Metschnikowia pulcherrima, lactic acid bacteria Lactiplantibacillus plantarum, and aqueous garlic extract, on the improvement of the physiology of planted potato tubers and the reduction in mycotoxin formation. The secondary metabolites produced by the fungal pathogens of genera Fusarium, Alternaria, Colletotrichum, Rhizoctonia, and Phoma in the presence of these biocontrol agents were compared to profiles obtained from contaminated potatoes. Analysis of liquid chromatography coupled with tandem mass spectrometry data showed the presence of 68 secondary metabolites, including the mycotoxins: alternariol, alternariol methyl ether, altertoxin-I, aurofusarin, beauvericin, diacetoxyscirpenol, enniatin B, and sterigmatocystin. The studies showed that the applied biocontrol agents had a positive effect on the physiological parameters of potatoes (including root growth, stem growth, gas exchange, and chlorophyll content index) and on the reduction in the production of mycotoxins and other secondary metabolites by Fusarium, Alternaria, and Phoma.


Assuntos
Micotoxinas , Solanum tuberosum , Micotoxinas/análise , Lactonas , Cromatografia Líquida , Alternaria/metabolismo
7.
Materials (Basel) ; 16(4)2023 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-36837011

RESUMO

Hybrid polysiloxanes and polysilsesquioxanes grafted with naturally occurring bioactive phytochemicals: eugenol and linalool, were synthesized and investigated with regard to their structure and properties. The two series of materials, differing in the type of inorganic structure and the content of active groups, were coated onto the surface of glass plates, and their antibiofilm activities against bacteria Aeromonas hydrophila were assessed by luminometry and fluorescence microscopy. Bioactivity was correlated with specific properties of the hybrid coatings (chemical structure, surface free energy and adhesiveness). The functionalized polysilsesquioxanes exhibited the most favorable anti-adhesive effects. Cell adhesion after 6 days of incubation, expressed as RLU/cm2, was significantly reduced (44 and 67 for, respectively, Z-E-100 and Z-L-100, compared to 517 for the control glass carrier). The surface stickiness of polysiloxane films deteriorated their anti-adhesion properties, despite the presence of a large amount of bioactive species.

8.
Molecules ; 27(12)2022 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-35744835

RESUMO

The feasibility of early disease detection in potato seeds storage monitoring of volatile organic compounds (VOCs) and plant physiological markers was evaluated using 10 fungal and bacterial pathogens of potato in laboratory-scale experiments. Data analysis of HS-SPME-GC-MS revealed 130 compounds released from infected potatoes, including sesquiterpenes, dimethyl disulfide, 1,2,4-trimethylbenzene, 2,6,11-trimethyldodecane, benzothiazole, 3-octanol, and 2-butanol, which may have been associated with the activity of Fusarium sambucinum, Alternaria tenuissima and Pectobacterium carotovorum. In turn, acetic acid was detected in all infected samples. The criteria of selection for volatiles for possible use as incipient disease indicators were discussed in terms of potato physiology. The established physiological markers proved to demonstrate a negative effect of phytopathogens infecting seed potatoes not only on the kinetics of stem and root growth and the development of the entire root system, but also on gas exchange, chlorophyll content in leaves, and yield. The negative effect of phytopathogens on plant growth was dependent on the time of planting after infection. The research also showed different usefulness of VOCs and physiological markers as the indicators of the toxic effect of inoculated phytopathogens at different stages of plant development and their individual organs.


Assuntos
Solanum tuberosum , Compostos Orgânicos Voláteis , Biomarcadores , Cromatografia Gasosa-Espectrometria de Massas , Pectobacterium carotovorum/fisiologia , Doenças das Plantas/microbiologia , Solanum tuberosum/microbiologia
9.
Molecules ; 27(6)2022 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-35335219

RESUMO

Pulcherrimin is a secondary metabolite of yeasts belonging to the Metschnikowia pulcherrima clade, and pulcherrimin formation is responsible for the antimicrobial action of its producers. Understanding the environmental function of this metabolite can provide insight into various microbial interactions and enables the efficient development of new effective bioproducts and methods. In this study, we evaluated the antimicrobial and antiadhesive action of yeast pulcherrimin, as well as its protective properties under selected stressful conditions. Classical microbiological plate methods, microscopy, and physico-chemical testing were used. The results show that pure pulcherrimin does not have antimicrobial properties, but its unique hydrophilic nature may hinder the adhesion of hydrophilic bacterial cells to abiotic surfaces. Pulcherrimin also proved to be a good cell protectant against UV-C radiation at both high and low temperatures.


Assuntos
Antibacterianos , Placas Ósseas , Temperatura Baixa , Interações Microbianas , Técnicas Microbiológicas
10.
Molecules ; 27(3)2022 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-35164110

RESUMO

Microorganisms are able to give rise to biofilm formation on food matrixes and along food industry infrastructures or medical equipment. This growth may be reduced by the application of molecules preventing bacterial adhesion on these surfaces. A new Schiff base ligand, derivative of hesperetin, HABH (2-amino-N'-(2,3-dihydro-5,7-dihydroxy-2-(3-hydroxy-4-methoxyphenyl)chromen-4-ylidene)benzohydrazide), and its copper complex, CuHABH [CuLH2(OAc)], were designed, synthesized and analyzed in terms of their structure and physicochemical properties, and tested as antibacterial agents. Their structures both in a solid state and in solution were established using several methods: FT-IR, 1H NMR, 13C NMR, UV-Vis, FAB MS, EPR, ESI-MS and potentiometry. Coordination binding of the copper(II) complex dominating at the physiological pH region in the solution was found to be the same as that detected in the solid state. Furthermore, the interaction between the HABH and CuHABH with calf-thymus DNA (CT-DNA) were investigated. These interactions were tracked by UV-Vis, CD (circular dichroism) and spectrofluorimetry. The results indicate a stronger interaction of the CuHABH with the CT-DNA than the HABH. It can be assumed that the nature of the interactions is of the intercalating type, but in the high concentration range, the complex can bind to the DNA externally to phosphate residues or to a minor/major groove. The prepared compounds possess antibacterial and antibiofilm activities against Gram-positive and Gram-negative bacteria. Their antagonistic activity depends on the factor-strain test system. The glass was selected as a model surface for the experiments on antibiofilm activity. The adhesion of bacterial cells to the glass surface in the presence of the compounds was traced by luminometry and the best antiadhesive action against both bacterial strains was detected for the CuHABH complex. This molecule may play a crucial role in disrupting exopolymers (DNA/proteins) in biofilm formation and can be used to prevent bacterial adhesion especially on glass equipment.


Assuntos
Antibacterianos , Complexos de Coordenação , Bactérias Gram-Negativas/crescimento & desenvolvimento , Bactérias Gram-Positivas/crescimento & desenvolvimento , Hesperidina , Hidrazonas , Antibacterianos/síntese química , Antibacterianos/química , Antibacterianos/farmacologia , Complexos de Coordenação/síntese química , Complexos de Coordenação/química , Complexos de Coordenação/farmacologia , Cobre/química , Cobre/farmacologia , Hesperidina/química , Hesperidina/farmacologia , Hidrazonas/química , Hidrazonas/farmacologia , Testes de Sensibilidade Microbiana
11.
Materials (Basel) ; 15(3)2022 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-35161018

RESUMO

Graphene oxide (GO) was deposited on a cotton fabric and then thermally reduced to reduced graphene oxide (rGO) with the assistance of L-ascorbic acid. The GO reduction imparted electrical conductivity to the fabric and allowed for electrochemical deposition of Ag° particles using cyclic voltammetry. Only the Ag°/rGO composite coating imparted antibacterial properties to the fabric against Escherichia coli and Staphylococcus aureus. Ag°/rGO-modified fibers were free of bacterial film, and bacterial growth inhibition zones around the material specimens were found. Moreover, Ag°/rGO-modified fabric became superhydrophobic with WCA of 161°.

12.
Oxid Med Cell Longev ; 2022: 8442734, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35069979

RESUMO

The genus Hyssopus is widespread in central Asia, East Mediterranean, and Mongolian areas. It has six main species which are used as herbal remedies, such as Hyssopus officinalis which is used as a condiment and flavoring agent in food industry. The other five species are H. ambiguus, H. cuspidatus, H. latilabiatus, H. macranthus, and H. seravschanicus. Its species are used in the treatment of various ailments such as cold, cough, loss of appetite, fungal infection, and spasmodic condition. Its constituents especially essential oils are popularly used as an additive in beverages, foods, and cosmetics. The volatile constituents are used for aroma in the food industry, cosmetic industry, and household products. The important active constituents in its essential oils are ß-pinene, pinocamphone, isopinocamphone, and other terpenoids. Hyssopus genus is also bundled with other secondary metabolites including flavonoids luteolin, quercetin, apigenin, and their glucosides, as well as phenolic compounds including ferulic, p-hydroxy-benzoic acid, protocatechuic acid, chlorogenic, and caffeic acid. Combinedly, the extracts of Hyssopus are reported to have potential antiviral and antifungal activities proven using in vitro studies, whereas in vivo investigations have reported the crucial role of Hyssopus extracts in plasma membrane relaxation, cytotoxic, and sedative effects. This plant is believed to be relatively safe at levels commonly used in foods; nevertheless, more studies are needed to determine the safety profile.


Assuntos
Antineoplásicos/uso terapêutico , Antioxidantes/uso terapêutico , Hyssopus/química , Óleos Voláteis/química , Compostos Fitoquímicos/uso terapêutico , Animais , Antineoplásicos/farmacologia , Antioxidantes/farmacologia , Humanos , Compostos Fitoquímicos/farmacologia
13.
Oxid Med Cell Longev ; 2021: 4014867, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34539969

RESUMO

Cyperaceae are a plant family of grass-like monocots, comprising 5600 species with a cosmopolitan distribution in temperate and tropical regions. Phytochemically, Cyperus is one of the most promising health supplementing genera of the Cyperaceae family, housing ≈950 species, with Cyperus rotundus L. being the most reported species in pharmacological studies. The traditional uses of Cyperus spp. have been reported against various diseases, viz., gastrointestinal and respiratory affections, blood disorders, menstrual irregularities, and inflammatory diseases. Cyperus spp. are known to contain a plethora of bioactive compounds such as α-cyperone, α-corymbolol, α-pinene, caryophyllene oxide, cyperotundone, germacrene D, mustakone, and zierone, which impart pharmacological properties to its extract. Therefore, Cyperus sp. extracts were preclinically studied and reported to possess antioxidant, anti-inflammatory, antimicrobial, anticancer, neuroprotective, antidepressive, antiarthritic, antiobesity, vasodilator, spasmolytic, bronchodilator, and estrogenic biofunctionalities. Nonetheless, conclusive evidence is still sparse regarding its clinical applications on human diseases. Further studies focused on toxicity data and risk assessment are needed to elucidate its safe and effective application. Moreover, detailed structure-activity studies also need time to explore the candidature of Cyperus-derived phytochemicals as upcoming drugs in pharmaceuticals.


Assuntos
Cyperus/química , Compostos Fitoquímicos/química , Animais , Anti-Inflamatórios/química , Anti-Inflamatórios/isolamento & purificação , Anti-Inflamatórios/farmacologia , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/isolamento & purificação , Antineoplásicos Fitogênicos/farmacologia , Antioxidantes/química , Proliferação de Células/efeitos dos fármacos , Cyperus/metabolismo , Microglia/citologia , Microglia/efeitos dos fármacos , Microglia/metabolismo , Compostos Fitoquímicos/isolamento & purificação , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/química , Transdução de Sinais/efeitos dos fármacos
14.
Oxid Med Cell Longev ; 2021: 6331630, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34539970

RESUMO

Daidzein is a phytoestrogen isoflavone found in soybeans and other legumes. The chemical composition of daidzein is analogous to mammalian estrogens, and it could be useful with a dual-directional purpose by substituting/hindering with estrogen and estrogen receptor (ER) complex. Hence, daidzein puts forth shielding effects against a great number of diseases, especially those associated with the control of estrogen, such as breast cancer, diabetes, osteoporosis, and cardiovascular disease. However, daidzein also has other ER-independent biological activities, such as oxidative damage reduction acting as an antioxidant, immune regulator as an anti-inflammatory agent, and apoptosis regulation, directly linked to its potential anticancer effects. In this sense, the present review is aimed at providing a deepen analysis of daidzein pharmacodynamics and its implications in human health, from its best-known effects alleviating postmenopausal symptoms to its potential anticancer and antiaging properties.


Assuntos
Isoflavonas/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Animais , Doenças Cardiovasculares/tratamento farmacológico , Doenças Cardiovasculares/patologia , Humanos , Isoflavonas/química , Isoflavonas/uso terapêutico , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Fármacos Neuroprotetores/química , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Osteoporose/tratamento farmacológico , Osteoporose/patologia , Glycine max/química , Glycine max/metabolismo
15.
Oxid Med Cell Longev ; 2021: 7571132, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34349875

RESUMO

The Glycyrrhiza genus, generally well-known as licorice, is broadly used for food and medicinal purposes around the globe. The genus encompasses a rich pool of bioactive molecules including triterpene saponins (e.g., glycyrrhizin) and flavonoids (e.g., liquiritigenin, liquiritin). This genus is being increasingly exploited for its biological effects such as antioxidant, antibacterial, antifungal, anti-inflammatory, antiproliferative, and cytotoxic activities. The species Glycyrrhiza glabra L. and the compound glycyrrhizin (glycyrrhizic acid) have been studied immensely for their effect on humans. The efficacy of the compound has been reported to be significantly higher on viral hepatitis and immune deficiency syndrome. This review provides up-to-date data on the most widely investigated Glycyrrhiza species for food and medicinal purposes, with special emphasis on secondary metabolites' composition and bioactive effects.


Assuntos
Anti-Inflamatórios/farmacocinética , Antioxidantes/farmacologia , Glycyrrhiza/química , Ácido Glicirrízico/farmacologia , Síndromes de Imunodeficiência/prevenção & controle , Inflamação/prevenção & controle , Compostos Fitoquímicos/farmacologia , Animais , Humanos , Síndromes de Imunodeficiência/patologia , Inflamação/patologia
16.
Molecules ; 26(9)2021 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-34066597

RESUMO

Thirty-three alkyl and aryl isothiocyanates, as well as isothiocyanate derivatives from esters of coded amino acids and from esters of unnatural amino acids (6-aminocaproic, 4-(aminomethyl)benzoic, and tranexamic acids), were synthesized with satisfactory or very good yields (25-97%). Synthesis was performed in a "one-pot", two-step procedure, in the presence of organic base (Et3N, DBU or NMM), and carbon disulfide via dithiocarbamates, with 4-(4,6-dimethoxy-1,3,5-triazin-2-yl)-4-methylmorpholinium toluene-4-sulfonate (DMT/NMM/TsO-) as a desulfurization reagent. For the synthesis of aliphatic and aromatic isothiocyanates, reactions were carried out in a microwave reactor, and selected alkyl isothiocyanates were also synthesized in aqueous medium with high yields (72-96%). Isothiocyanate derivatives of L- and D-amino acid methyl esters were synthesized, under conditions without microwave radiation assistance, with low racemization (er 99 > 1), and their absolute configuration was confirmed by circular dichroism. Isothiocyanate derivatives of natural and unnatural amino acids were evaluated for antibacterial activity on E. coli and S. aureus bacterial strains, where the most active was ITC 9e.


Assuntos
Química Orgânica/métodos , Isotiocianatos/síntese química , Morfolinas/química , Tolueno/química , Triazinas/química , Aminas/química , Antibacterianos/química , Técnicas de Química Sintética , Cromatografia , Dicroísmo Circular , Escherichia coli/efeitos dos fármacos , Indicadores e Reagentes , Isotiocianatos/análise , Isotiocianatos/química , Espectroscopia de Ressonância Magnética , Micro-Ondas , Solventes , Staphylococcus aureus/efeitos dos fármacos , Enxofre/química , Temperatura
17.
Cells ; 10(3)2021 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-33809924

RESUMO

Numerous honeybee (Apis mellifera) products, such as honey, propolis, and bee venom, are used in traditional medicine to prevent illness and promote healing. Therefore, this insect has a huge impact on humans' way of life and the environment. While the population of A. mellifera is large, there is concern that widespread commercialization of beekeeping, combined with environmental pollution and the action of bee pathogens, has caused significant problems for the health of honeybee populations. One of the strategies to preserve the welfare of honeybees is to better understand and protect their natural microbiota. This paper provides a unique overview of the latest research on the features and functioning of A. mellifera. Honeybee microbiome analysis focuses on both the function and numerous factors affecting it. In addition, we present the characteristics of lactic acid bacteria (LAB) as an important part of the gut community and their special beneficial activities for honeybee health. The idea of probiotics for honeybees as a promising tool to improve their health is widely discussed. Knowledge of the natural gut microbiota provides an opportunity to create a broad strategy for honeybee vitality, including the development of modern probiotic preparations to use instead of conventional antibiotics, environmentally friendly biocides, and biological control agents.


Assuntos
Abelhas/microbiologia , Microbioma Gastrointestinal , Trato Gastrointestinal/microbiologia , Mel , Lactobacillales/metabolismo , Animais , Criação de Abelhas , Abelhas/efeitos dos fármacos , Abelhas/metabolismo , Disbiose , Interações Hospedeiro-Patógeno , Humanos , Inseticidas/efeitos adversos , Controle Biológico de Vetores , Probióticos
18.
Molecules ; 26(4)2021 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-33557279

RESUMO

Intrinsic hydrophobicity is the reason for efficient bacterial settlement and biofilm growth on silicone materials. Those unwelcomed phenomena may play an important role in pathogen transmission. We have proposed an approach towards the development of new anti-biofilm strategies that resulted in novel antimicrobial hydrophobic silicones. Those functionalized polysiloxanes grafted with side 2-(carboxymethylthioethyl)-, 2-(n-propylamidomethylthioethyl)- and 2-(mercaptoethylamidomethylthioethyl)- groups showed a wide range of antimicrobial properties towards selected strains of bacteria (reference strains Staphylococcus aureus, Escherichia coli and water-borne isolates Agrobacterium tumefaciens, Aeromonas hydrophila), fungi (Aureobasidium pullulans) and algae (Chlorella vulgaris), which makes them valuable antibacterial and antibiofilm agents. Tested microorganisms showed various levels of biofilm formation, but particularly effective antibiofilm activity was demonstrated for bacterial isolate A. hydrophila with high adhesion abilities. In the case of modified surfaces, the relative coefficient of adhesion for this strain was 18 times lower in comparison to the control glass sample.


Assuntos
Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Adesão Celular/efeitos dos fármacos , Interações Hidrofóbicas e Hidrofílicas , Siloxanas/química , Siloxanas/farmacologia , Anti-Infecciosos/síntese química , Siloxanas/síntese química
19.
Molecules ; 25(8)2020 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-32295155

RESUMO

Algae are employed commonly in cosmetics, food and pharmaceuticals, as well as in feed production and biorefinery processes. In this study, post-fermentation leachate from a biogas plant which exploits stillage and maize silage was utilized as a culture medium for Chlorella vulgaris. The content of polyphenols in hydrophilic extracts of the Chlorella vulgaris biomass was determined, and the extracts were evaluated for their antioxidant activity (DPPH assay), antibacterial activity (against Escherichia coli, Lactobacillus plantarum, Staphylococcus aureus, Staphylococcus epidermidis) and antifungal activity (against Aspergillus niger, Candida albicans, Saccharomyces cerevisiae). The use of the post-fermentation leachate was not found to affect the biological activity of the microalgae. The aqueous extract of Chlorella vulgaris biomass was also observed to exhibit activity against nematodes. The results of this study suggest that Chlorella vulgaris biomass cultured on post-fermentation leachate from a biogas plant can be successfully employed as a source of natural antioxidants, food supplements, feed, natural antibacterial and antifungal compounds, as well as in natural methods of plant protection.


Assuntos
Chlorella vulgaris/química , Fermentação , Microalgas/química , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Zea mays/química , Antioxidantes/química , Antioxidantes/farmacologia , Interações Hidrofóbicas e Hidrofílicas , Ultrafiltração
20.
J Clin Med ; 9(2)2020 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-32075040

RESUMO

Oral diseases are considered the most common noncommunicable diseases and are related to serious local and systemic disorders. Oral pathogens can grow and spread in the oral mucosae and frequently in biomaterials (e.g., dentures or prostheses) under polymicrobial biofilms, leading to several disorders such as dental caries and periodontal disease. Biofilms harbor a complex array of interacting microbes, increasingly unapproachable to antimicrobials and with dynamic processes key to disease pathogenicity, which partially explain the gradual loss of response towards conventional therapeutic regimens. New drugs (synthesized and natural) and other therapies that have revealed promising results for the treatment or control of these mixed biofilms are presented and discussed here. A structured search of bibliographic databases was applied to include recent research. There are several promising new approaches in the treatment of Candida spp.-Streptococcus mutans oral mixed biofilms that could be clinically applied in the near future. These findings confirm the importance of developing effective therapies for oral Candida-bacterial infections.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...