Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Soft Matter ; 19(6): 1186-1193, 2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36655681

RESUMO

Magnetic nanoparticles couple to polymeric environments by several mechanisms. These include van der Waals, steric, hydrodynamic and electrostatic forces. This leads to numerous interesting effects and potential applications. Still, the details of the coupling are often unknown. In a previous work, we showed that, for spherical particles, hydrodynamic coupling alone can explain experimentally observed trends in magnetic AC susceptibility spectra [P. Kreissl, C. Holm and R. Weeber, Soft Matter, 2021, 17, 174-183]. Non-spherical, elongated particles are of interest because an enhanced coupling to the surrounding polymers is expected. In this publication we study the interplay of steric and hydrodynamic interactions between those particles and a polymer suspension. To this end, we obtain rotational friction coefficients, relaxation times for the magnetic moment, and AC susceptibility spectra, and compare these for simulations with and without hydrodynamic interactions considered. We show that, even if the particle is ellipsoidal, its hydrodynamic interactions with the surrounding polymers are much stronger than the steric ones due to the shape-anisotropy of the particle.

2.
J Chem Phys ; 155(13): 134902, 2021 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-34624966

RESUMO

We investigate the ionic current modulation in DNA nanopore translocation setups by numerically solving the electrokinetic mean-field equations for an idealized model. Specifically, we study the dependence of the ionic current on the relative length of the translocating molecule. Our simulations show a significantly smaller ionic current for DNA molecules that are shorter than the pore at low salt concentrations. These effects can be ascribed to the polarization of the ion cloud along the DNA that leads to an opposing electric dipole field. Our results for DNA shine light on the observed discrepancy between infinite pore models and experimental data on various sized DNA complexes.


Assuntos
DNA , Nanoporos , Íons , Concentração Osmolar
3.
Soft Matter ; 17(1): 174-183, 2021 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-33165470

RESUMO

Magnetic composite materials i.e. elastomers, polymer gels, or polymer solutions with embedded magnetic nanoparticles are useful for many technical and bio-medical applications. However, the microscopic details of the coupling mechanisms between the magnetic properties of the particles and the mechanical properties of the (visco)elastic polymer matrix remain unresolved. Here we study the response of a single-domain spherical magnetic nanoparticle that is suspended in a polymer solution to alternating magnetic fields. As interactions we consider only excluded volume interactions with the polymers and hydrodynamic interactions mediated through the solvent. The AC susceptibility spectra are calculated using a linear response Green-Kubo approach, and the influences of changing polymer concentration and polymer length are investigated. Our data is compared to recent measurements of the AC susceptibility for a typical magnetic composite system [Roeben et al., Colloid Polym. Sci., 2014, 2013-2023], and demonstrates the importance of hydrodynamic coupling in such systems.

4.
Phys Rev Lett ; 124(11): 119901, 2020 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-32242695

RESUMO

This corrects the article DOI: 10.1103/PhysRevLett.122.208002.

5.
Phys Rev Lett ; 122(20): 208002, 2019 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-31172744

RESUMO

We develop a double mean-field theory for charged macrogels immersed in electrolyte solutions in the spirit of the cell model approach. We first demonstrate that the equilibrium sampling of a single explicit coarse-grained charged polymer in a cell yields accurate predictions of the swelling equilibrium if the geometry is suitably chosen and all pressure contributions have been incorporated accurately. We then replace the explicit flexible chain by a suitably modeled penetrable charged rod that allows us to compute all pressure terms within the Poisson-Boltzmann approximation. This model, albeit computationally cheap, yields excellent predictions of swelling equilibria under varying chain length, polymer charge fraction, and external reservoir salt concentrations when compared to coarse-grained molecular dynamics simulations of charged macrogels. We present an extension of the model to the experimentally relevant cases of pH-sensitive gels.

6.
Acc Chem Res ; 51(12): 2998-3005, 2018 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-30417644

RESUMO

Active matter concerns itself with the study of particles that convert energy into work, typically motion of the particle itself. This field saw a surge of interest over the past decade, after the first micrometer-sized, man-made chemical motors were created. These particles served as a simple model system for studying in a well-controlled manner complex motion and cooperative behavior as known from biology. In addition, they have stimulated new efforts in understanding out-of-equilibrium statistical physics and started a revolution in microtechnology and robotics. Concentrated effort has gone into realizing these ambitions, and yet much remains unknown about the chemical motors themselves. The original designs for self-propelled particles relied on the conversion of the chemical energy of hydrogen peroxide into motion via catalytic decomposition taking place heterogeneously over the surface of the motor. This sets up gradients of chemical fields around the particle, which allow it to autophorese. That is, the interaction between the motor and the heterogeneously distributed solute species can drive fluid flow and the motor itself. There are two basic designs: the first relies on redox reactions taking place between the two sides of a bimetal, for example, a gold-platinum Janus sphere or nanorod. The second uses a catalytic layer of platinum inhomogeneously vapor-deposited onto a nonreactive particle. For convenience's sake, these can be referred to as redox motors and monometallic half-coated motors, respectively. To date, most researchers continue to rely on variations of these simple, yet elegant designs for their experiments. However, there is ongoing debate on the exact way chemical energy is transduced into motion in these motors. Many of the experimental observations on redox motors were successfully modeled via self-electrophoresis, while for half-coated motors there has been a strong focus on self-diffusiophoresis. Currently, there is mounting evidence that self-electrophoresis provides the dominant contribution to the observed speeds of half-coated motors, even if the vast majority of the reaction products are electroneutral. In this Account, we will summarize the most common electrophoretic propulsion model and discuss its strengths and weaknesses in relation to recent experiments. We will comment on the possible need to go beyond surface reactions and consider the entire medium as an "active fluid" that can create and annihilate charged species. This, together with confinement and collective effects, makes it difficult to gain a detailed understanding of these swimmers. The potentially dominant effect of confinement is highlighted on the basis of a recent study of an electro-osmotic pump that drives fluid along a substrate. Detailed analysis of this system allows for identification of the electro-osmotic driving mechanism, which is powered by micromolar salt concentrations. We will discuss how our latest numerical solver developments, based on the lattice Boltzmann method, should enable us to study collective behavior in systems comprised of these and other electrochemical motors in realistic environments. We conclude with an outlook on the future of modeling chemical motors that may facilitate the community's microtechnological ambitions.

7.
Soft Matter ; 13(7): 1505-1518, 2017 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-28127614

RESUMO

An ion-exchange-resin-based microfluidic pump is introduced that utilizes trace amounts of ions to generate fluid flows. We show experimentally that our pump operates in almost deionized water for periods exceeding 24 h and induces fluid flows of µm s-1 over hundreds of µm. This flow displays a far-field, power-law decay which is characteristic of two-dimensional (2D) flow when the system is strongly confined and of three-dimensional (3D) flow when it is not. Using theory and numerical calculations we demonstrate that our observations are consistent with electroosmotic pumping driven by µmol L-1 ion concentrations in the sample cell that serve as 'fuel' to the pump. Our study thus reveals that trace amounts of charge carriers can produce surprisingly strong fluid flows; an insight that should benefit the design of a new class of microfluidic pumps that operate at very low fuel concentrations.

8.
J Chem Phys ; 144(20): 204902, 2016 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-27250326

RESUMO

We consider the efficiency of self-phoretic colloidal particles (swimmers) as a function of the heterogeneity in the surface reaction rate. The set of fluid, species, and electrostatic continuity equations is solved analytically using a linearization and numerically using a finite-element method. To compare spherical swimmers of different size and with heterogeneous catalytic conversion rates, a "swimmer efficiency" functional η is introduced. It is proven that in order to obtain maximum swimmer efficiency, the reactivity has to be localized at the pole(s). Our results also shed light on the sensitivity of the propulsion speed to details of the surface reactivity, a property that is notoriously hard to measure. This insight can be utilized in the design of new self-phoretic swimmers.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...