Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microbiol Spectr ; 10(5): e0058222, 2022 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-36121240

RESUMO

Extended-spectrum beta-lactamase (ESBL)-producing Escherichia coli can cause invasive infections in infants and immunocompromised children with high associated morbidity and mortality. The gut is a major reservoir of these strains in the community. Current dogma dictates that antimicrobial resistance is associated with a fitness cost. However, recent data show that some contemporary ESBL E. coli strains may be more "fit" compared to nonresistant E. coli strains. Here, we use whole-genome sequencing to first characterize 15 ESBL E. coli strains isolated from infants in a Pakistani community, a clinical extraintestinal pathogenic ESBL E. coli ST131 strain, and a non-ESBL commensal E. coli strain, and then use a novel animal model of early life gut colonization to assess the ability of these strains to colonize the infant mouse gut. We determined that CTX-M-15 was present in all the ESBL strains, as well as additional beta-lactamases and genes conferring resistance to multiple antibiotic classes. In the animal model, 11/16 ESBL E. coli strains had significantly higher burden of colonization at week four of life compared to commensal strains, even in the absence of selective antibiotic pressure, suggesting that these strains may have enhanced fitness despite being highly antimicrobial resistant. IMPORTANCE Antimicrobial resistance is a global public health emergency. Infants, especially preterm infants and those in the neonatal intensive care unit, immunocompromised hosts, and those with chronic illnesses are at highest risk of adverse outcomes from invasive infections with antimicrobial-resistant strains. It has long been thought that resistance is associated with a fitness cost, i.e., antimicrobial-resistant strains are not able to colonize the gut as well as nonresistant strains, and that antibiotic exposure is a key risk factor for persistent colonization with resistant strains. Here, we use a novel infant mouse model to add to the growing body of literature that some highly-resistant contemporary Escherichia coli strains can persist in the gut with a significant burden of colonization despite absence of antibiotic exposure.


Assuntos
Infecções por Escherichia coli , Escherichia coli , Recém-Nascido , Humanos , Camundongos , Animais , Escherichia coli/genética , Animais Recém-Nascidos , Recém-Nascido Prematuro , beta-Lactamases/genética , Antibacterianos/farmacologia
2.
Environ Entomol ; 48(3): 489-495, 2019 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-30873550

RESUMO

Spalangia endius Walker is a parasitoid wasp that is commercially available as a biological control agent for filth fly pests in livestock-rearing operations. Imidacloprid is often used to control these flies. The present study examined the sublethal effect of field-realistic concentrations of imidacloprid on mating behavior, offspring sex ratios, and male preference for virgin females. After exposure to imidacloprid, S. endius females that survived were less likely to mate than control females, which will result in male-biased sex ratios because only mated females can produce daughters. Males did not avoid exposed females, but exposed females were almost always unreceptive. Males that survived exposure to imidacloprid exhibited reduced mating competitiveness against unexposed males. However, if an exposed male mated, his mate's sex ratio and ability to control flies was unaffected. Exposed males were also still able to discriminate against mated, and thus usually unreceptive, females. Together with previous studies, these results suggest that not only does imidacloprid reduce the ability of S. endius females to survive and parasitize hosts, but when an exposed female does survive and parasitize hosts, she is likely to produce just sons, because of her lack of receptivity. More-male-biased populations of S. endius will decrease their efficacy for fly control. Thus, the use of imidacloprid along with this parasitoid may be financially inefficient for pest management.


Assuntos
Dípteros , Himenópteros , Vespas , Animais , Agentes de Controle Biológico , Feminino , Masculino , Neonicotinoides , Razão de Masculinidade
3.
J Econ Entomol ; 112(2): 974-980, 2019 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-30566671

RESUMO

Filth flies, including house flies, Musca domestica L., develop in animal manure. Adult house flies often are controlled with pesticides such as imidacloprid. How imidacloprid disseminates and persists after it contaminates manure was measured at a dairy farm. A week after application of imidacloprid via fly bait to cattle manure, a mean of approximately 4 ppm of imidacloprid, and as high as 15 ppm, was quantifiable up to 12 cm from the application site, but not farther. Laboratory experiments addressed the impact of 15 ppm of imidacloprid in manure on egg-to-adult development of house flies and on the biological control ability of a house fly pupal parasitoid, Spalangia endius Walker. In uncontaminated manure, 93% of eggs developed to adults, versus 7% in contaminated manure. In the parasitoid experiment, fly pupae were placed in contaminated or uncontaminated manure with or without S. endius. In the absence of S. endius, nearly 100% of flies emerged, with or without imidacloprid. In the presence of S. endius, only 11% of flies emerged from uncontaminated manure, versus 36% from contaminated manure; and parasitoids emerged from 82% of hosts in uncontaminated manure versus 53% in contaminated manure. These results suggest that realistic concentrations of imidacloprid in filth fly breeding habitat may interfere with house flies developing to the pupal stage, but also with parasitoids locating and utilizing house flies. However, after 1 wk, the effects on parasitoids will be low 12 cm beyond where bait was applied.


Assuntos
Moscas Domésticas , Muscidae , Vespas , Animais , Agentes de Controle Biológico , Bovinos , Esterco , Neonicotinoides , Nitrocompostos , Pupa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...