Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 7(12): 6530-40, 2015 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-25729881

RESUMO

Fully green and facile redox chemistry involving reduction of colloidal iron hydroxide (Fe(OH)3) through green tea (GT) polyphenols produced water-soluble Fe3O4 nanocrystals coated with GT extracts namely epigallocatechin gallate (EGCG) and epicatechin (EC). Electron donating polyphenols stoichiometrically reduced Fe(3+) ions into Fe(2+) ions resulting in the formation of magnetite (Fe3O4) nanoparticles and corresponding oxidized products (semiquinones and quinones) that simultaneously served as efficient surface chelators for the Fe3O4 nanoparticles making them dispersible and stable in water, PBS, and cell culture medium for extended time periods. As-formed iron oxide nanoparticles (2.5-6 nm) displayed high crystallinity and saturation magnetization as well as high relaxivity ratios manifested in strong contrast enhancement observed in T2-weighted images. Potential of green tea-coated superparamagnetic iron oxide nanocrystals (SPIONs) as superior negative contrast agents was confirmed by in vitro and in vivo experiments. Primary human macrophages (J774A.1) and colon cancer cells (CT26) were chosen to assess cytotoxicity and cellular uptake of GT-, EGCGq-, and ECq-coated Fe3O4 nanoparticles, which showed high uptake efficiencies by J774A.1 and CT26 cells without any additional transfection agent. Furthermore, the in vivo accumulation characteristics of GT-coated Fe3O4 nanoparticles were similar to those observed in clinical studies of SPIONs with comparable accumulation in epidermoid cancer-xenograft bearing mice. Given their promising transport and uptake characteristics and new surface chemistry, GT-SPIONs conjugates can be applied for multimodal imaging and therapeutic applications by anchoring further functionalities.


Assuntos
Camellia sinensis/química , Catequina/análogos & derivados , Catequina/química , Compostos Férricos/química , Imageamento por Ressonância Magnética/métodos , Nanopartículas/química , Extratos Vegetais/química , Animais , Linhagem Celular , Sobrevivência Celular , Humanos , Macrófagos/química , Macrófagos/citologia , Imageamento por Ressonância Magnética/instrumentação , Camundongos
2.
Dalton Trans ; (18): 1829-37, 2007 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-17471378

RESUMO

[NMe(4)][R(f)Te(SC(S)NR(2))(2)] derivatives are selectively formed by the oxidation of [NMe(4)]TeR(f) (R(f) = CF(3), C(2)F(5)) with [R(2)NC(S)S](2) (NR(2) = NEt(2), NBz(2), N(CH(2))(4)) in almost quantitative yields. An alternative route to obtain the dithiocarbamato complex anions offer reactions of Te[SC(S)NR(2)](2) (NR(2) = NEt(2), NBz(2)) with equimolar amounts of Me(3)SiR(f) and [NMe(4)]F. Some of the derivatives were recrystallized with bulky cations in order to determine the crystal structures. Structural elucidation by diffraction methods exhibit the structural feature of a distorted pentagonal planar environment (resembling "butterflies") around the tellurium centres. The carbamato tellurates can be transferred easily into the neutral derivatives, R(f)TeSC(S)NR(2), upon treatment with Ag[BF(4)]. In solution they equilibrate with Te(2)(R(f))(2) and [R(2)NC(S)S](2) and finally are transformed into Te(R(f))(2), Te[SC(S)NR(2)](2), and Te[SC(S)NR(2)](4), respectively. All compounds are fully characterized by NMR spectroscopic methods ((1)H, (13)C, (19)F, (125)Te). Additionally, synthesis and characterization of the hitherto unknown derivative [NMe(4)]TeC(2)F(5) are described.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...