Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nano Lett ; 24(8): 2637-2642, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38345784

RESUMO

Surface plasmon polaritons (SPPs) can confine and guide light in nanometer volumes and are ideal tools for achieving electric field enhancement and the construction of nanophotonic circuitry. The realization of the highest field strengths and fastest switching requires confinement also in the temporal domain. Here, we demonstrate a tapered plasmonic waveguide with an optimized grating structure that supports few-cycle surface plasmon polaritons with >70 THz bandwidth while achieving >50% light-field-to-plasmon coupling efficiency. This enables us to observe the─to our knowledge─shortest reported SPP wavepackets. Using time-resolved photoelectron microscopy with suboptical-wavelength spatial and sub-10 fs temporal resolution, we provide full spatiotemporal imaging of co- and counter-propagating few-cycle SPP wavepackets along tapered plasmonic waveguides. By comparing their propagation, we track the evolution of the laser-plasmon phase, which can be controlled via the coupling conditions.

2.
Opt Express ; 30(19): 34385-34395, 2022 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-36242451

RESUMO

Recording of transient absorption microscopy images requires fast detection of minute optical density changes, which is typically achieved with high-repetition-rate laser sources and lock-in detection. Here, we present a highly flexible and cost-efficient detection scheme based on a conventional photodiode and an USB oscilloscope with MHz bandwidth, that deviates from the commonly used lock-in setup and achieves benchmark sensitivity. Our scheme combines shot-to-shot evaluation of pump-probe and probe-only measurements, a home-built photodetector circuit optimized for low pulse energies applying low-pass amplification, and a custom evaluation algorithm based on Fourier transformation. Advantages of this approach include abilities to simultaneously monitor multiple pulse modulation frequencies, implement the detection of additional pulse sequences (e.g., pump-only), and expand to multiple parallel detection channels for wavelength-dispersive probing. With a 40 kHz repetition-rate laser system powering two non-collinear optical parametric amplifiers for wide tuneability, we find that laser pulse fluctuations limit the sensitivity of the setup, while the detection scheme has negligible contribution. We demonstrate the 2-D imaging performance of our transient absorption microscope with studies on micro-crystalline molecular thin films.

3.
Nanoscale Adv ; 4(17): 3566-3572, 2022 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-36134347

RESUMO

We demonstrate that the photoconductance of colloidal PbS/MAPbI3 quantum dots in nanoscale gold electrode gaps shows a consistent power law dependence of the photocurrent on the light intensity with an exponent slightly below 0.7. The gap sizes are between 25 and 800 nm and by scanning photocurrent microscopy we evidence the strong localization and high reproducibility of photocurrent generation. We probe different flat-faced and pointed electrodes for excitation light in the red and near infrared spectral range and laser irradiances from 10-2 to 102 W cm-2. Our material combination provides practically identical photocurrent response for a wide range of gap sizes and geometries, highlighting its generic potential for nanoscale light coupling and detection.

4.
Nano Lett ; 22(6): 2303-2308, 2022 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-35240778

RESUMO

Nonadiabatic nano-optical electron tunneling in the transition region between multiphoton-induced emission and adiabatic tunnel emission is explored in the near-field of plasmonic nanostructures. For Keldysh γ values between ∼1.3 and ∼2.2, measured photoemission spectra show strong-field recollision driven by the nanoscale near-field. At the same time, the photoemission yield shows an intensity scaling with a constant nonlinearity, which is characteristic for multiphoton-induced emission. Our observations in this transition region were well reproduced with the numerical solution of Schrödinger's equation, mimicking the nanoscale geometry of the field. This way, we determined the boundaries and nature of nonadiabatic tunneling photoemission, building on a key advantage of a nanoplasmonic system, namely, that high-field-driven recollision events and their signature in the photoemission spectrum can be observed more efficiently due to significant nanoplasmonic field enhancement factors.

5.
Nano Lett ; 21(1): 590-596, 2021 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-33336569

RESUMO

We use cathodoluminescence (CL) spectroscopy in a transmission electron microscope to probe the radial breathing mode of plasmonic silver nanodisks. A two-mirror detection system sandwiching the sample collects the CL emission in both directions, that is, backward and forward with respect to the electron beam trajectory. We unambiguously identify a spectral shift of about 8 nm in the CL spectra acquired from both sides and show that this asymmetry is induced by the electron beam itself. By numerical simulations, we confirm the observations and identify the underlying physical effect due to the interference of the CL emission patterns of an electron-beam-induced dipole and the breathing mode. This effect can ultimately limit the achievable fidelity in CL measurements on any system involving multiple excitations and should therefore be considered with care in high-precision experiments.

6.
ACS Photonics ; 5(12): 4823-4827, 2018 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-30591924

RESUMO

We show that the plasmon modes of vertically stacked Ag-SiO2-Ag nanodisks can be understood and classified as hybridized surface and edge modes. We describe their universal dispersion relations and demonstrate that coupling-induced spectral shifts are significantly stronger for surface modes than for edge modes. The experimental data correspond well to numerical simulations. In addition, we estimate optical intensity enhancements of the stacked nanodisks in the range of 1000.

7.
ACS Photonics ; 5(3): 861-866, 2018 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-29607350

RESUMO

Due to a vanishing dipole moment, radial breathing modes in small flat plasmonic nanoparticles do not couple to light and have to be probed with a near-field source, as in electron energy loss spectroscopy (EELS). With increasing particle size, retardation gives rise to light coupling, enabling probing breathing modes optically or by cathodoluminescence (CL). Here, we investigate single silver nanodisks with diameters of 150-500 nm by EELS and CL in an electron microscope and quantify the EELS/CL ratio, which corresponds to the ratio of full to radiative damping of the breathing mode. For the investigated diameter range, we find the CL signal to increase by about 1 order of magnitude, in agreement with numerical simulations. Due to reciprocity, our findings corroborate former optical experiments and enable a quantitative understanding of the light coupling of dark plasmonic modes.

8.
Nano Lett ; 17(11): 6773-6777, 2017 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-28981295

RESUMO

Plasmonic gap modes provide the ultimate confinement of optical fields. Demanding high spatial resolution, the direct imaging of these modes was only recently achieved by electron energy loss spectroscopy (EELS) in a scanning transmission electron microscope (STEM). However, conventional 2D STEM-EELS is only sensitive to components of the photonic local density of states (LDOS) parallel to the electron trajectory. It is thus insensitive to specific gap modes, a restriction that was lifted with the introduction of tomographic 3D EELS imaging. Here, we show that by 3D EELS tomography the gap mode LDOS of a vertically stacked nanotriangle dimer can be fully imaged. Besides probing the complete mode spectrum, we demonstrate that the tomographic approach allows disentangling the signal contributions from the two nanotriangles that superimpose in a single measurement with a fixed electron trajectory. Generally, vertically coupled nanoparticles enable the tailoring of 3D plasmonic fields, and their full characterization will thus aid the development of complex nanophotonic devices.

9.
Nano Lett ; 17(2): 1181-1186, 2017 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-28094992

RESUMO

Probing nanooptical near-fields is a major challenge in plasmonics. Here, we demonstrate an experimental method utilizing ultrafast photoemission from plasmonic nanostructures that is capable of probing the maximum nanoplasmonic field enhancement in any metallic surface environment. Directly measured field enhancement values for various samples are in good agreement with detailed finite-difference time-domain simulations. These results establish ultrafast plasmonic photoelectrons as versatile probes for nanoplasmonic near-fields.


Assuntos
Nanopartículas Metálicas/química , Campos Eletromagnéticos , Fluorescência , Ouro/química , Cinética , Lasers , Espectroscopia Fotoeletrônica , Prata/química , Propriedades de Superfície
10.
Micron ; 93: 43-51, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27918893

RESUMO

Spectrum imaging techniques, gaining simultaneously structural (image) and spectroscopic data, require appropriate and careful processing to extract information of the dataset. In this article we introduce a MATLAB based software that uses three dimensional data (EEL/CL spectrum image in dm3 format (Gatan Inc.'s DigitalMicrograph®)) as input. A graphical user interface enables a fast and easy mapping of spectral dependent images and position dependent spectra. First, data processing such as background subtraction, deconvolution and denoising, second, multiple display options including an EEL/CL moviemaker and, third, the applicability on a large amount of data sets with a small work load makes this program an interesting tool to visualize otherwise hidden details.

11.
Nanoscale ; 8(36): 16449-54, 2016 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-27603414

RESUMO

We probe the local sensitivity of an optically excited plasmonic nanoparticle by changing the local dielectric environment through a scanning glass fiber tip. Recording the particle plasmon scattering spectrum for each tip position allows us to observe spectral resonance shifts concurrent with changes in scattering intensity and plasmon damping. For the tip-induced spectral shifts we find the strongest sensitivity at the particle edges, in accordance with the spatial plasmonic field profile. In contrast, the strongest sensitivity occurs at the center of the particle if the scattering intensity is probed at the short wavelength slope of the plasmon resonance instead of the resonance position. This bears important implications for plasmonic sensing, in particular when done at a single light wavelength.

12.
Nano Lett ; 16(8): 5152-5, 2016 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-27427962

RESUMO

The coupling of plasmonic nanoparticles can strongly modify their optical properties. Here, we show that the coupling of the edges within a single rectangular particle leads to mode splitting and the formation of bonding and antibonding edge modes. We are able to unambiguously designate the modes due to the high spatial resolution of electron microscopy-based electron energy loss spectroscopy and the comparison with numerical simulations. Our results provide simple guidelines for the interpretation and the design of plasmonic mode spectra.

13.
Opt Lett ; 40(23): 5670-3, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26625078

RESUMO

By focusing propagating surface plasmons, electromagnetic energy can be delivered to nanoscale volumes. In this context, we employ electron energy loss spectroscopy in a scanning transmission electron microscope to characterize the full plasmonic mode spectrum of a silver thin film tapered to a sharp tip. We show that the plasmon modes can be ordered in film and edge modes and corroborate our assignment through supplementary numerical simulations. In particular, we find that the focused plasmon field at the taper tip is fueled by edge modes.

14.
Opt Express ; 23(8): 10293-300, 2015 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-25969071

RESUMO

We experimentally investigate the local refractive index sensitivity of plasmonic gold nanodisks by applying small polymer dots to selected disk sites by means of two-step lithography. Measured sensitivity profiles obtained from tracking the polymer-induced spectral shift of the plasmon modes are in excellent agreement with numerical simulation of both spectral sensitivity and the electric near field of the nanodisks. Based on the nanodisk sensitivity profile we tailor a sensitive and spatially uniform plasmonic sensor by capping the disk with a dielectric layer, thus restricting analyte access to the disk rim.

15.
Nano Lett ; 14(8): 4810-5, 2014 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-25000389

RESUMO

We morph a silver nanodisk into a nanotriangle by producing a series of nanoparticles with electron beam lithography. Using electron energy loss spectroscopy (EELS), we map out the plasmonic eigenmodes and trace the evolution of edge and film modes during morphing. Our results suggest that disk modes, characterized by angular order, can serve as a suitable basis for other nanoparticle geometries and are subject to resonance energy shifts and splittings, as well as to hybridization upon morphing. Similar to the linear combination of atomic orbitals (LCAO) in quantum chemistry, we introduce a linear combination of plasmonic eigenmodes to describe plasmon modes in different geometries, hereby extending the successful hybridization model of plasmonics.

16.
Nat Commun ; 5: 3604, 2014 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-24717682

RESUMO

Dimensionality has a significant impact on the optical properties of solid-state nanostructures. For example, dimensionality-dependent carrier confinement in semiconductors leads to the formation of quantum wells, quantum wires and quantum dots. While semiconductor properties are governed by excitonic effects, the optical response of metal nanostructures is dominated by surface plasmons. Here we find that, in contrast to excitonic systems, the mode dispersions in plasmonic structures of different dimensionality are related by simple scaling rules. Employing electron energy loss spectroscopy, we show that the modes of silver nanodisks can be scaled to the surface and edge modes of extended silver thin films. We thereby introduce a general and intuitive ordering scheme for plasmonic excitations with edge and surface modes as the elementary building blocks.

17.
Nano Lett ; 13(9): 4257-62, 2013 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-23968490

RESUMO

The coupling of optical emitters with a nanostructured environment is at the heart of nano- and quantum optics. We control this coupling by the lithographic positioning of a few (1-3) quantum dots (QDs) along plasmonic silver nanowires with nanoscale resolution. The fluorescence emission from the QD-nanowire systems is probed spectroscopically, by microscopic imaging and decay time measurements. We find that the plasmonic modes can strongly modulate the fluorescence emission. For a given QD position, the local plasmon field dictates the coupling efficiency, and thus the relative weight of free space radiation and emission into plasmon modes. Simulations performed with a generic few-level model give very good agreement with experiment. Our data imply that the 2D degenerate emission dipole orientation of the QD can be forced to predominantly emit to one polarization component dictated by the nanowire modes.

18.
Opt Express ; 21(12): 13938-48, 2013 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-23787583

RESUMO

The scattering of electrically excited surface plasmon polaritons (SPPs) into photons at the edges of gold metal stripes is investigated. The SPPs are locally generated by the inelastic tunneling current of a scanning tunneling microscope (STM). The majority of the collected light arising from the scattering of SPPs at the stripe edges is emitted in the forward direction and is collected at large angle (close to the air-glass critical angle, θ(c)). A much weaker isotropic component of the scattered light gives rise to an interference pattern in the Fourier plane images, demonstrating that plasmons may be scattered coherently. An analysis of the interference pattern as a function of excitation position on the stripe is used to determine a value of 1.42 ± 0.18 for the relative plasmon wave vector (kSPP/k0) of the corresponding SPPs. From these results, we interpret the directional, large angle (θ~θ(c)) scattering to be mainly from plasmons on the air-gold interface, and the diffuse scattering forming interference fringes to be dominantly from plasmons on the gold-substrate interface.


Assuntos
Ouro/química , Ouro/efeitos da radiação , Microscopia de Tunelamento/métodos , Ressonância de Plasmônio de Superfície/instrumentação , Ressonância de Plasmônio de Superfície/métodos , Desenho de Equipamento , Análise de Falha de Equipamento , Luz , Espalhamento de Radiação
19.
J Colloid Interface Sci ; 394: 237-42, 2013 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-23352701

RESUMO

In this paper, we demonstrate the template-assisted deposition of cetyltrimethylammonium bromide (CTAB) stabilized gold nanorods at lithographically defined positions on a substrate. Overcoating of the nanoparticles with polystyrenesulfonate allows to switch the original nanoparticles positive surface charge to negative and to apply the template-assisted deposition technique developed for citrate-capped gold nanoparticles also to CTAB stabilized nanoparticles. The successful, selective deposition of gold nanorods in trenches with widths down to 50 nm is demonstrated. Our results indicate the potential of this method for the fabrication of well controlled, reproducible plasmonic biosensing substrates, applicable to the vast palette of anisotropic nanoparticle shapes synthesized with CTAB as the templating agent.

20.
Nano Lett ; 13(2): 674-8, 2013 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-23339740

RESUMO

We demonstrate the ultrafast generation of electrons from tailored metallic nanoparticles and unravel the role of plasmonic field enhancement in this process by comparing resonant and off-resonant particles, as well as different particle geometries. We find that electrons become strongly accelerated within the evanescent fields of the plasmonic nanoparticles and escape along straight trajectories with orientations governed by the particle geometry. These results establish plasmonic nanoparticles as versatile ultrafast, nanoscopic sources of electrons.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...