Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioorg Med Chem ; 23(16): 5144-50, 2015 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-25797165

RESUMO

Given the rise of parasite resistance to all currently used antimalarial drugs, the identification of novel chemotypes with unique mechanisms of action is of paramount importance. Since Plasmodium expresses a number of aspartic proteases necessary for its survival, we have mined antimalarial datasets for drug-like aspartic protease inhibitors. This effort led to the identification of spiropiperidine hydantoins, bearing similarity to known inhibitors of the human aspartic protease ß-secretase (BACE), as new leads for antimalarial drug discovery. Spiropiperidine hydantoins have a dynamic structure-activity relationship profile with positions identified as being tolerant of a variety of substitution patterns as well as a key piperidine N-benzyl phenol pharmacophore. Lead compounds 4e (CWHM-123) and 12k (CWHM-505) are potent antimalarials with IC50 values against Plasmodium falciparum 3D7 of 0.310 µM and 0.099 µM, respectively, and the former features equivalent potency on the chloroquine-resistant Dd2 strain. Remarkably, these compounds do not inhibit human aspartic proteases BACE, cathepsins D and E, or Plasmodium plasmepsins II and IV despite their similarity to known BACE inhibitors. Although the current leads suffer from poor metabolic stability, they do fit into a drug-like chemical property space and provide a new class of potent antimalarial agents for further study.


Assuntos
Antimaláricos/química , Antimaláricos/farmacologia , Hidantoínas/química , Hidantoínas/farmacologia , Malária Falciparum/tratamento farmacológico , Plasmodium falciparum/efeitos dos fármacos , Animais , Antimaláricos/metabolismo , Antimaláricos/farmacocinética , Ácido Aspártico Endopeptidases/antagonistas & inibidores , Ácido Aspártico Endopeptidases/metabolismo , Descoberta de Drogas , Humanos , Hidantoínas/metabolismo , Hidantoínas/farmacocinética , Malária Falciparum/parasitologia , Camundongos , Microssomos Hepáticos/metabolismo , Piperidinas/química , Piperidinas/metabolismo , Piperidinas/farmacocinética , Piperidinas/farmacologia , Plasmodium falciparum/enzimologia , Plasmodium falciparum/metabolismo , Ratos , Compostos de Espiro/química , Compostos de Espiro/metabolismo , Compostos de Espiro/farmacocinética , Compostos de Espiro/farmacologia
2.
ACS Chem Neurosci ; 5(2): 106-14, 2014 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-24304333

RESUMO

Chronic opioids induce synaptic plasticity, a major neuronal adaptation. Astrocyte activation in synaptogenesis may play a critical role in opioid tolerance, withdrawal, and dependence. Thrombospondins 1 and 2 (TSP1/2) are astrocyte-secreted matricellular glycoproteins that promote neurite outgrowth as well as dendritic spine and synapse formation, all of which are inhibited by chronic µ opioids. In prior studies, we discovered that the mechanism of TSP1 regulation by µ opioids in astrocytes involves crosstalk between three different classes of receptors, µ opioid receptor, EGFR and TGFßR. Moreover, TGFß1 stimulated TSP1 expression via EGFR and ERK/MAPK activation, indicating that EGFR is a signaling hub for opioid and TGFß1 actions. Using various selective antagonists, and inhibitors, here we compared the mechanisms of chronic opioid regulation of TSP1/2 isoform expression in vivo and in immortalized rat cortical astrocytes. TSP1/2 release from astrocytes was also monitored. Acute and chronic µ opioids, morphine, and the prototypic µ ligand, DAMGO, modulated TSP2 protein levels. TSP2 but not TSP1 protein content was up-regulated by acute (3 h) morphine or DAMGO by an ERK/MAPK dependent mechanism. Paradoxically, TSP2 protein levels were altered neither by TGFß1 nor by astrocytic neurotrophic factors, EGF, CNTF, and BMP4. TSP1/2 immunofluorescence was increased in astrocytes subjected to scratch-wounding, suggesting TSPs may be useful markers for the "reactive" state of these cells and potentially for different types of injury. Previously, we determined that chronic morphine attenuated both neurite outgrowth and synapse formation in cocultures of primary astrocytes and neurons under similar temporal conditions that µ opioids reduced TSP1 protein levels in astrocytes. Here we found that, after the same 8 day treatment, morphine or DAMGO diminished TSP2 protein levels in astrocytes. Therefore, µ opioids may deter synaptogenesis via both TSP1/2 isoforms, but by distinct mechanisms.


Assuntos
Analgésicos Opioides/farmacologia , Astrócitos/efeitos dos fármacos , Ala(2)-MePhe(4)-Gly(5)-Encefalina/farmacologia , Morfina/farmacologia , Trombospondina 1/efeitos dos fármacos , Trombospondinas/efeitos dos fármacos , Animais , Astrócitos/metabolismo , Proteína Morfogenética Óssea 4/farmacologia , Fator Neurotrófico Ciliar/farmacologia , Fator de Crescimento Epidérmico/farmacologia , MAP Quinases Reguladas por Sinal Extracelular/efeitos dos fármacos , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Análise em Microsséries , Isoformas de Proteínas , RNA Mensageiro/metabolismo , Ratos , Trombospondina 1/metabolismo , Trombospondinas/metabolismo , Fator de Crescimento Transformador beta1/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...