Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biotechnol ; 325: 35-42, 2021 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-33301852

RESUMO

The photosynthetic acclimation of extremophile Eutrema salsugineum plants to red light (RL) (14 days, 150 µmol photons m-2 s-1, 660 nm) and the expression of the key photoreceptor apoprotein genes, transcription factors (TFs) and associated with phytochrome system MIR (microRNA) genes were studied. RL exposure induced an increase in the content of anthocyanin and total phenolic compounds and the level of Chls was decreased. The photosystem 2 electron transport rate and the number of open reaction centres (qL) were not changed in RL plants, however, the levels of non-photochemical quenching (NPQ) and the regulated quantum yield of non-photochemical quenching Y(NPQ) were significantly higher in the RL plants. The rate of CO2 uptake was decreased by almost 1.4-fold but the respiration and transpiration rates, as well as the stomatal conductance were not changed in the RL plants. An increase in the expression of the photoreceptor apoprotein genes PHYA, PHYB and PHYC, the TF genes PIF4, PIF5 and miR395, miR408, miR165 and decreases in the levels of the transcripts of the TF gene HY5 and miR171, miR157, and miR827 were detected. The acclimation effect of photosynthetic apparatus to RL was accompanied by an increase of pigment content such as total phenolic compounds and carotenoids and it is due to the changes in the expression of the apoprotein phytochrome genes PHYA, PHYB, PHYC and phytochrome signalling TFs (PIF4, PIF5 and HY5) as well as MIR genes associated with phytochrome system.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Extremófilos , MicroRNAs , Fitocromo , Aclimatação , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Expressão Gênica , Luz , MicroRNAs/genética , Mutação , Fitocromo/genética , Fitocromo B
2.
Photosynth Res ; 136(2): 199-214, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29071562

RESUMO

The antioxidant balance, photochemical activity of photosystem II (PSII), and photosynthetic pigment content, as well as the expression of genes involved in the light signalling of callus lines of Eutrema salsugineum plants (earlier Thellungiella salsuginea) under different spectral light compositions were studied. Growth of callus in red light (RL, maximum 660 nm), in contrast to blue light (BL, maximum 450 nm), resulted in a lower H2O2 content and thiobarbituric acid reactive substances (TBARS). The BL increased the activities of key antioxidant enzymes in comparison with the white light (WL) and RL and demonstrated the minimum level of PSII photochemical activity. The activities of catalase (CAT) and peroxidase (POD) had the highest values in BL, which, along with the increased H2O2 and TBARS content, indicate a higher level of oxidative stress in the cells. The expression levels of the main chloroplast protein genes of PSII (PSBA and PSBD), the NADPH-dependent oxidase gene of the plasma membrane (RbohD), the protochlorophyllide oxidoreductase genes (POR B, C) involved in the biosynthesis of chlorophyll, and the key photoreceptor signalling genes (CIB1, CRY2, PhyB, PhyA, and PIF3) were determined. Possible mechanisms of light quality effects on the physiological parameters of callus cells are discussed.


Assuntos
Antioxidantes/metabolismo , Brassicaceae/genética , Brassicaceae/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Proteínas de Plantas/genética , Brassicaceae/citologia , Carotenoides/metabolismo , Sobrevivência Celular , Clorofila/metabolismo , Clorofila A , Enzimas/metabolismo , Regulação da Expressão Gênica de Plantas , Peróxido de Hidrogênio/metabolismo , Luz , Fotorreceptores de Plantas/genética , Fotorreceptores de Plantas/metabolismo , Complexo de Proteína do Fotossistema II/genética , Proteínas de Plantas/metabolismo , Transdução de Sinais/genética , Substâncias Reativas com Ácido Tiobarbitúrico/metabolismo , Técnicas de Cultura de Tecidos
3.
Plant Biol (Stuttg) ; 19(5): 683-688, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28646629

RESUMO

Inhibitory effects of polycyclic aromatic hydrocarbons (PAHs) on plants were studied in pea leaves in order to elucidate the mechanisms of action of PAHs such as naphthalene (Naph) and phenanthrene (Phen) on activity of photosystem II (PSII). The changes in different Chl fluorescence parameters were calculated on the basis of Chl fluorescence induction curves. H2 O2 content was measured in leaf homogenates with the luminol-dependent chemiluminescence method. We demonstrated that following PAH treatment, total energy dissipation (DI0 /ABS) and amount of QB -non-reducing complexes of PSII significantly increased. Non-photochemical quenching (NPQ) also increased, when weak oxidative stress after PAH application developed. In leaves, a two-step increase in H2 O2 was found with time of incubation in the presence of PAHs, which may be associated with damage to the lipid bilayer of the plasma membrane and then violation of lipid bilayer membranes of cell organelles. A hypothesis for the mode of action of PAHs is provided that involves the role of ROS, membrane permeability and associated functional changes in PSII.


Assuntos
Pisum sativum/metabolismo , Folhas de Planta/metabolismo , Hidrocarbonetos Policíclicos Aromáticos/metabolismo , Tilacoides/metabolismo , Naftalenos/metabolismo , Fenantrenos/metabolismo , Fotossíntese/fisiologia , Complexo de Proteína do Fotossistema II/metabolismo
4.
Biochemistry (Mosc) ; 81(3): 201-12, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27262189

RESUMO

The finding of unique Chl d- and Chl f-containing cyanobacteria in the last decade was a discovery in the area of biology of oxygenic photosynthetic organisms. Chl b, Chl c, and Chl f are considered to be accessory pigments found in antennae systems of photosynthetic organisms. They absorb energy and transfer it to the photosynthetic reaction center (RC), but do not participate in electron transport by the photosynthetic electron transport chain. However, Chl d as well as Chl a can operate not only in the light-harvesting complex, but also in the photosynthetic RC. The long-wavelength (Qy) Chl d and Chl f absorption band is shifted to longer wavelength (to 750 nm) compared to Chl a, which suggests the possibility for oxygenic photosynthesis in this spectral range. Such expansion of the photosynthetically active light range is important for the survival of cyanobacteria when the intensity of light not exceeding 700 nm is attenuated due to absorption by Chl a and other pigments. At the same time, energy storage efficiency in photosystem 2 for cyanobacteria containing Chl d and Chl f is not lower than that of cyanobacteria containing Chl a. Despite great interest in these unique chlorophylls, many questions related to functioning of such pigments in primary photosynthetic processes are still not elucidated. This review describes the latest advances in the field of Chl d and Chl f research and their role in primary photosynthetic processes of cyanobacteria.


Assuntos
Clorofila/análogos & derivados , Cianobactérias/metabolismo , Clorofila/química , Clorofila/metabolismo , Transporte de Elétrons , Metabolismo Energético , Fotossíntese , Complexo de Proteínas do Centro de Reação Fotossintética/química , Complexo de Proteínas do Centro de Reação Fotossintética/metabolismo
5.
Biochemistry (Mosc) ; 79(11): 1216-25, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25540007

RESUMO

The effect of a typical polyaromatic hydrocarbon, naphthalene (Naph), on photosystem 2 (PS-2) photochemical activity in thylakoid membrane preparations and 20-day-old pea leaves was studied. Samples were incubated in water in the presence of Naph (0.078, 0.21, and 0.78 mM) for 0.5-24 h under white light illumination (15 µmol photons·m(-2)·s(-1)). The PS-2 activity was determined by studying fast and delayed chlorophyll (Chl) a fluorescence. Incubation of samples in water solutions at Naph concentrations of 0.21 and 0.78 mM led to a decrease in the maximum PS-2 quantum efficiency (Fv/Fm), noticeable changes in the polyphasic induction kinetics of fluorescence (OJIP), and a decrease in the amplitudes of the fast and slow components of delayed fluorescence of Chl a. The rate of release of electrolytes from leaves that were preliminarily incubated with Naph (0.21 mM) was also increased. Significant decrease in the fluorescence parameters in thylakoid membrane preparations was observed at Naph concentration of 0.03 mM and 12-min exposure of the samples. Chlorophyll (a and b) and carotenoid content (mg per gram wet mass) was insignificantly changed. The quantum yields of electron transfer from QA to QB (φET2o) and also to the PS-1 acceptors (φRE1o) were reduced. These results are explained by the increase in the number of QB-non-reducing centers of PS-2, which increased with increasing Naph concentration and exposure time of leaves in Naph solution. The suppression of PS-2 activity was partly abolished in the presence of the electron donor sodium ascorbate. Based on these results, it is suggested that Naph distorts cell membrane intactness and acts mainly on the PS-2 acceptor and to a lesser degree on the PS-2 donor side.


Assuntos
Poluentes Ambientais/farmacologia , Naftalenos/farmacologia , Complexo de Proteína do Fotossistema II/metabolismo , Pisum sativum/efeitos dos fármacos , Pisum sativum/química , Pisum sativum/metabolismo , Processos Fotoquímicos/efeitos dos fármacos , Complexo de Proteína do Fotossistema II/química , Espectrometria de Fluorescência , Tilacoides/química , Tilacoides/efeitos dos fármacos
7.
Chemosphere ; 47(3): 311-7, 2002 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-11996152

RESUMO

Activated carbon can remove 2,4,6-trinitrotoluene (TNT) and 1,3,5-trinitrobenzene (TNB) from aqueous solution and promote oxidation of TNT. After equilibrating a 0.35 mM TNT solution with activated carbon (0.2-1% w/v), HPLC and GC/MS analysis confirmed the presence of 2,4,6-trinitrobenzaldehyde (TNBAld) and 2,4,6-trinitrobenzene (TNB), and provided strong evidence supporting 2,4,6-trinitrobenzyl alcohol (TNBAlc) as an intermediate of TNT oxidation. After 6 d, TNT and its oxidation products were strongly bound to the activated carbon, while TNB was extractable with acetonitrile. Observations indicate that activated carbon catalyzes TNT oxidation to TNBAlc, which is readily oxidized to TNBAld and TNB in the absence of activated carbon under dark conditions. While adsorbed TNB was extractable with acetonitrile, activated carbon promoted rapid TNT oxidation and formation of unextractable residues. Strong binding is attributed to catalyzed oxidation of the TNT methyl group, probably through a free radical mechanism, and subsequent chemisorption of oligomers and polymerized products that are not desorbed from micropores. Our observations indicate TNT oxidation and bound residue formation after sorption by activated carbon increases the effectiveness of activated carbon to decontaminate water.


Assuntos
Carbono/química , Trinitrotolueno/química , Adsorção , Catálise , Cromatografia Líquida de Alta Pressão , Cromatografia Gasosa-Espectrometria de Massas , Oxirredução , Poluentes do Solo , Poluentes da Água
8.
Environ Toxicol Chem ; 20(5): 965-71, 2001 May.
Artigo em Inglês | MEDLINE | ID: mdl-11337885

RESUMO

Activated carbon can be used to decrease 2,4,6-trinitrotoluene (TNT) toxicity and promote bioremediation of highly contaminated soil. Adding activated carbon at 0.25, 0.75, and 1.0% (w/w) to Sharpsburg soil contaminated with 500, 1,000, and 2,000 mg TNT/kg decreased concentrations of TNT and its transformation products in soil solution to 5 mg/L or less, resulting in low toxicity to corn plants (Zea mays L.) and soil microorganisms. As much as 50% of the added TNT was rapidly bound to the soil-activated carbon matrix. Simultaneous accumulation of 2,4,6-trinitrobenzaldehyde (TNBAld) indicated that the activated carbon promoted oxidation of TNT. Some of the TNBAld was further oxidized to 1,3,5-trinitrobenzene, followed by reduction to 3,5-dinitroaniline. Reversibly bound TNT was gradually transformed to 2-amino-4,6-dinitrotoluene and 4-amino-2,6-dinitrotoluene, and both were bound to the soil-activated carbon matrix. The transformation and binding of TNT to soil were further promoted by incorporating shredded corn plants after growing for 52 d in the activated carbon-amended soil. After 120 d, these amendments reduced extractable TNT and transformation products by 91% in soil containing 2,000 mg TNT/kg, compared to 55% in unamended soil. These results demonstrate the potential use of activated carbon in combination with plants to promote in situ bioremediation of soils highly contaminated with explosives.


Assuntos
Carbono/farmacologia , Poluentes do Solo/toxicidade , Trinitrotolueno/toxicidade , Plantas/efeitos dos fármacos , Microbiologia do Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...