Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 892: 164536, 2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37268139

RESUMO

Wind turbines (WT) cause bird and bat mortalities which depend on the WT and landscape features. The effects of WT features and environmental variables at different spatial scales associated to bat deaths in a mountainous and forested area in Thrace, NE Greece were investigated. Initially, we sought to quantify the most lethal WT characteristic between tower height, rotor diameter and power. The scale of interaction distance between bat deaths and the land cover characteristics surrounding the WTs was quantified. A statistical model was trained and validated against bat deaths and WT, land cover, and topography features. Variance partitioning between bat deaths and the explanatory covariates was conducted. The trained model was used to predict bat deaths attributed to existing and future wind farm development in the region. Results indicated that the optimal interaction distance between WT and surrounding land cover was 5 km, the larger distance than the ones examined. WT power, natural land cover type and distance from water explained 40 %, 15 % and 11 % respectively of the total variance in bat deaths by WTs. The model predicted that operating but not surveyed WTs comprise of 377.8 % and licensed but not operating yet will contribute to 210.2 % additional deaths than the ones recorded. Results indicate that among all WT features and land cover characteristics, wind turbine power is the most significant factor associated to bat deaths. In addition, WTs located within 5 km buffer comprised of natural land cover types have substantial higher deaths. More WT power will result in more deaths. Wind turbines should not be licensed in areas where natural land cover at a radius of 5 km exceeds 50 %. These results are discussed in the climate-land use-biodiversity-energy nexus.


Assuntos
Quirópteros , Animais , Modelos Estatísticos , Florestas , Aves , Biodiversidade
2.
Hum Ecol Interdiscip J ; 50(4): 725-738, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35729956

RESUMO

Vultures constitute globally the most rapidly declining group of birds. Across their wide distribution range, they share common ecological functions and unfavourable conservation status while being associated with varying habitats, lifestyles, cultural standing, and threats. We reveal conceptualisations about the emblematic yet critically endangered Egyptian vulture along its migratory flyway from the Balkans through the Middle East to Africa. Information was gathered through interviews, focus group discussions, and market surveys, with 420 people in 11 participating countries contributing overall. Our results showed that all vultures are recognised primarily for the environmental cleaning services, but the level of awareness differs between countries. Τhe Egyptian vulture has some perceptual advantages based on its white color, migratory nature, and endangered conservation status. This underlines its suitability as a charismatic flagship species that can potentially benefit other vulture species and thus enforce broader vulture conservation initiatives. Supplementary Information: The online version contains supplementary material available at 10.1007/s10745-022-00340-6.

3.
Animals (Basel) ; 11(11)2021 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-34827967

RESUMO

Hunting dog depredation by wolves triggers retaliatory killing, with negative impacts on wildlife conservation. In the wider area of the Dadia-Lefkimi-Soufli Forest National Park, reports on such incidents have increased lately. To investigate this conflict, we interviewed 56 affected hunters, conducted wolf trophic analysis, analyzed trends for 2010-2020, applied MAXENT models for risk-map creation, and GLMs to explore factors related to depredation levels. Losses averaged approximately one dog per decade and hunter showing a positive trend, while livestock depredations showed a negative trend. Wolves preyed mainly on wild prey, with dogs consisting of 5.1% of the winter diet. Low altitude areas, with low to medium livestock availability favoring wolf prey and game species, were the riskiest. Dogs were more vulnerable during hare hunting and attacks more frequent during wolf post-weaning season or in wolf territories with reproduction. Hunter experience and group hunting reduced losses. Wolves avoided larger breeds or older dogs. Making noise or closely keeping dogs reduced attack severity. Protective dog vests, risk maps, and enhancing wolf natural prey availability are further measures to be considered, along with a proper verification system to confirm and effectively separate wolf attacks from wild boar attacks, which were also common.

4.
J Anim Ecol ; 90(5): 1228-1238, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33786863

RESUMO

Long-distance migrations are among the most physically demanding feats animals perform. Understanding the potential costs and benefits of such behaviour is a fundamental question in ecology and evolution. A hypothetical cost of migration should be outweighed by higher productivity and/or higher annual survival, but few studies on migratory species have been able to directly quantify patterns of survival throughout the full annual cycle and across the majority of a species' range. Here, we use telemetry data from 220 migratory Egyptian vultures Neophron percnopterus, tracked for 3,186 bird months and across approximately 70% of the species' global distribution, to test for differences in survival throughout the annual cycle. We estimated monthly survival probability relative to migration and latitude using a multi-event capture-recapture model in a Bayesian framework that accounted for age, origin, subpopulation and the uncertainty of classifying fates from tracking data. We found lower survival during migration compared to stationary periods (ß = -0.816; 95% credible interval: -1.290 to -0.318) and higher survival on non-breeding grounds at southern latitudes (<25°N; ß = 0.664; 0.076-1.319) compared to on breeding grounds. Survival was also higher for individuals originating from Western Europe (ß = 0.664; 0.110-1.330) as compared to further east in Europe and Asia, and improved with age (ß = 0.030; 0.020-0.042). Anthropogenic mortalities accounted for half of the mortalities with a known cause and occurred mainly in northern latitudes. Many juveniles drowned in the Mediterranean Sea on their first autumn migration while there were few confirmed mortalities in the Sahara Desert, indicating that migration barriers are likely species-specific. Our study advances the understanding of important fitness trade-offs associated with long-distance migration. We conclude that there is lower survival associated with migration, but that this may be offset by higher non-breeding survival at lower latitudes. We found more human-caused mortality farther north, and suggest that increasing anthropogenic mortality could disrupt the delicate migration trade-off balance. Research to investigate further potential benefits of migration (e.g. differential productivity across latitudes) could clarify how migration evolved and how migrants may persist in a rapidly changing world.


Assuntos
Migração Animal , Aves , África do Norte , Animais , Teorema de Bayes , Europa (Continente) , Mar Mediterrâneo , Estações do Ano
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...