Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 30(1): 407-419, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35900624

RESUMO

Freshwater grazers are suitable organisms to investigate the fate of environmental pollutants, such as weathered multi-walled carbon nanotubes (wMWCNTs). One key process is the uptake of ingested materials into digestive or absorptive cells. To address this, we investigated the localization of wMWCNTs in the intestinal tracts of the mud snail Lymnaea stagnalis (L. stagnalis) and the mayfly Rhithrogena semicolorata (R. semicolorata). In L. stagnalis, bundles of wMWCNTs could be detected in the midgut lumen, whereas only single wMWCNTs could be detected in the lumina of the digestive gland. Intracellular uptake of wMWCNTs was detected by transmission electron microscopy (TEM) but was restricted to the cells of the digestive gland. In larvae of R. semicolorata, irritations of the microvilli and damages in the apical parts of the epithelial gut cells were detected after feeding with 1 to 10 mg/L wMWCNTs. In both models, we detected fibrillar structures in close association with the epithelial cells that formed peritrophic membranes (PMs). The PM may cause a reduced transmission of wMWCNT bundles into the epithelium by forming a filter barrier and potentially protecting the cells from the wMWCNTs. As a result, the uptake of wMWCNTs into cells is rare in mud snails and may not occur at all in mayfly larvae. In addition, we monitor physiological markers such as levels of glycogen or triglycerides and the RNA/DNA ratio. This ratio was significantly affected in L. stagnalis after 24 days with 10 mg/L wMWCNTs, but not in R. semicolorata after 28 days and 10 mg/L wMWCNTs. However, significant effects on the energy status of R. semicolorata were analysed after 28 days of exposure to 1 mg/L wMWCNTs. Furthermore, we observed a significant reduction of phagosomes per enterocyte cell in mayfly larvae at a concentration of 10 mg/L wMWCNTs (p < 0.01).


Assuntos
Ephemeroptera , Nanotubos de Carbono , Animais , Lymnaea/fisiologia , Larva , Células Epiteliais , Água Doce
2.
Environ Sci Pollut Res Int ; 29(18): 26706-26725, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34859348

RESUMO

Although the development and application of nanomaterials is a growing industry, little data is available on the ecotoxicological effects on aquatic organisms. Therefore, we set up a workflow to address the potential uptake of weathered multi-walled carbon nanotubes (wMWCNTs) by a model organism, the pulmonary mud snail Lymnaea stagnalis (L. stagnalis), which plays an important role in the food web. It represents a suitable organism for this approach because as a grazer it potentially ingests large amounts of sedimented wMWCNTs. As food source for L. stagnalis, benthic biofilm was investigated by the use of a transmission electron microscope (TEM) and a scanning electron microscope (SEM) after exposure with wMWCNTs. In addition, isotopic labeling was applied with 14C-wMWCNTs (0.1 mg/L) to quantify fate, behavior, and enrichment of 14C-wMWCNTs in benthic biofilm and in L. stagnalis. Enrichment in benthic biofilm amounted to 529.0 µg wMWCNTs/g dry weight and in L. stagnalis to 79.6 µg wMWCNTs/g dry weight. A bioconcentration factor (BCF) for L. stagnalis was calculated (3500 L/kg). We demonstrate the accumulation of wMWCNTs (10 mg/L) in the digestive tract of L. stagnalis in an effect study. Moreover, the physiological markers glycogen and triglycerides as indicators for the physiological state, as well as the RNA/DNA ratio as growth indicator, were examined. No significant differences between exposed and control animals were analyzed for glycogen and triglycerides after 24 days of exposure, but a decreasing trend is recognizable for triglycerides. In contrast, the significant reduction in the RNA/DNA ratio of L. stagnalis indicated an inhibition of growth with a following recovery after depuration. The described workflow enables a comprehensive determination of the fate and the behavior of wMWCNTs specifically and in general all kinds of CNTs in the aquatic environment and therefore contributes to a holistic risk assessment of wMWCNTs.


Assuntos
Nanotubos de Carbono , Poluentes Químicos da Água , Animais , Glicogênio , Lymnaea , Nanotubos de Carbono/toxicidade , RNA , Caramujos , Triglicerídeos , Poluentes Químicos da Água/toxicidade , Fluxo de Trabalho
3.
J Cell Biol ; 220(2)2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33326005

RESUMO

Microtubules play a major role in intracellular trafficking of vesicles in endocrine cells. Detailed knowledge of microtubule organization and their relation to other cell constituents is crucial for understanding cell function. However, their role in insulin transport and secretion is under debate. Here, we use FIB-SEM to image islet ß cells in their entirety with unprecedented resolution. We reconstruct mitochondria, Golgi apparati, centrioles, insulin secretory granules, and microtubules of seven ß cells, and generate a comprehensive spatial map of microtubule-organelle interactions. We find that microtubules form nonradial networks that are predominantly not connected to either centrioles or endomembranes. Microtubule number and length, but not microtubule polymer density, vary with glucose stimulation. Furthermore, insulin secretory granules are enriched near the plasma membrane, where they associate with microtubules. In summary, we provide the first 3D reconstructions of complete microtubule networks in primary mammalian cells together with evidence regarding their importance for insulin secretory granule positioning and thus their supportive role in insulin secretion.


Assuntos
Imageamento Tridimensional , Células Secretoras de Insulina/metabolismo , Microscopia Eletrônica de Varredura , Microtúbulos/ultraestrutura , Organelas/metabolismo , Animais , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Células Cultivadas , Glucose/farmacologia , Insulina/metabolismo , Células Secretoras de Insulina/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Microtúbulos/efeitos dos fármacos , Microtúbulos/metabolismo , Vesículas Secretórias/efeitos dos fármacos , Vesículas Secretórias/metabolismo
4.
Sci Rep ; 7(1): 23, 2017 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-28154417

RESUMO

Correlative light and electron microscopy (CLEM) is a powerful approach to investigate the molecular ultrastructure of labeled cell compartments. However, quantitative CLEM studies are rare, mainly due to small sample sizes and the sensitivity of fluorescent proteins to strong fixatives and contrasting reagents for EM. Here, we show that fusion of a self-labeling protein to insulin allows for the quantification of age-distinct insulin granule pools in pancreatic beta cells by a combination of super resolution and transmission electron microscopy on Tokuyasu cryosections. In contrast to fluorescent proteins like GFP organic dyes covalently bound to self-labeling proteins retain their fluorescence also in epoxy resin following high pressure freezing and freeze substitution, or remarkably even after strong chemical fixation. This enables for the assessment of age-defined granule morphology and degradation. Finally, we demonstrate that this CLEM protocol is highly versatile, being suitable for single and dual fluorescent labeling and detection of different proteins with optimal ultrastructure preservation and contrast.


Assuntos
Resinas Epóxi , Secções Congeladas , Proteínas Luminescentes/química , Microscopia Eletrônica de Transmissão/métodos , Microscopia de Fluorescência/métodos , Coloração e Rotulagem/métodos , Animais , Células Cultivadas , Crioultramicrotomia , Fixadores , Congelamento , Proteínas de Fluorescência Verde/química , Insulina/genética , Células Secretoras de Insulina/ultraestrutura , Camundongos , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética
5.
Methods Cell Biol ; 111: 75-93, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22857924

RESUMO

Correlative microscopy combines the versatility of the light microscope with the excellent spatial resolution of the electron microscope. Here, we describe fast and simple methods for correlative immunofluorescence and immunogold labeling on the very same ultrathin section. The protocols are demonstrated on sections of tissue samples embedded in the methacrylate Lowicryl K4M. Ultrathin sections are mounted on electron microscopy (EM) grids and stained simultaneously with fluorescent and gold markers. For the detection of primary antibodies, we applied either protein A gold or immunoglobulin G (IgG) gold in combination with secondary antibodies coupled to Alexa488 or Alexa555. Alternatively, the correlative marker FluoroNanogold was used, followed by silver enhancement. The samples have to be analyzed first at the light microscope and then in the transmission electron microscope (TEM), because the fluorescence is bleached by the electron beam. Labeled structures selected at the fluorescence microscope can be identified in the TEM and analyzed at high resolution. This way, fluorescent signals can be directly correlated to the corresponding subcellular structures in the area of interest.


Assuntos
Microscopia Eletrônica de Transmissão , Coloração e Rotulagem , Animais , Técnica Indireta de Fluorescência para Anticorpo , Proteínas de Fluorescência Verde/metabolismo , Masculino , Camundongos , Microscopia de Fluorescência , Microtomia , Inclusão em Plástico , Proteínas Recombinantes de Fusão/metabolismo , Retina/ultraestrutura , Rodopsina/metabolismo , Espermátides/ultraestrutura , Testículo/ultraestrutura , Fixação de Tecidos
6.
Genesis ; 50(3): 235-50, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22083609

RESUMO

Amphibians including the South African clawed frog Xenopus laevis, its close relative Xenopus tropicalis, and the Mexican axolotl (Ambystoma mexicanum) are important vertebrate models for cell biology, development, and regeneration. For the analysis of embryos and larva with altered gene expression in gain-of-function or loss-of-function studies histology is increasingly important. Here, we discuss plastic or resin embedding of embryos as valuable alternatives to conventional paraffin embedding. For example, microwave-assisted tissue processing, combined with embedding in the glycol methacrylate Technovit 7100, is a fast, simple, and reliable method to obtain state-of-the-art histology with high resolution of cellular details in less than a day. Microwave-processed samples embedded in Epon 812 are also useful for transmission electron microscopy. Finally, Technovit-embedded samples are well suited for serial section analysis of embryos labeled either by whole-mount immunofluorescence, or with tracers such as GFP or fluorescent dextrans. Therefore, plastic embedding offers a versatile alternative to paraffin embedding for routine histology and immunocytochemistry of amphibian embryos.


Assuntos
Anfíbios/embriologia , Anfíbios/crescimento & desenvolvimento , Embrião não Mamífero/anatomia & histologia , Inclusão em Plástico/métodos , Anfíbios/anatomia & histologia , Animais , Técnicas Histológicas , Larva/anatomia & histologia , Inclusão em Parafina
7.
Methods Cell Biol ; 96: 395-423, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20869532

RESUMO

In this chapter we provide a set of different protocols for the ultrastructural analysis of amphibian (Xenopus, axolotl) tissues, mostly of embryonic origin. For Xenopus these methods include: (1) embedding gastrulae and tailbud embryos into Spurr's resin for TEM, (2) post-embedding labeling of methacrylate (K4M) and cryosections through adult and embryonic epithelia for correlative LM and TEM, and (3) pre-embedding labeling of embryonic tissues with silver-enhanced nanogold. For the axolotl (Ambystoma mexicanum) we present the following methods: (1) SEM of migrating neural crest (NC) cells; (2) SEM and TEM of extracellular matrix (ECM) material; (3) Cryo-SEM of extracellular matrix (ECM) material after cryoimmobilization; and (4) TEM analysis of hyaluronan using high-pressure freezing and HABP labeling. These methods provide exemplary approaches for a variety of questions in the field of amphibian development and regeneration, and focus on cell biological issues that can only be answered with fine structural imaging methods, such as electron microscopy.


Assuntos
Ambystoma mexicanum/anatomia & histologia , Microscopia Eletrônica/métodos , Xenopus laevis/anatomia & histologia , Ambystoma mexicanum/embriologia , Animais , Embrião não Mamífero/ultraestrutura , Substituição ao Congelamento/métodos , Imuno-Histoquímica/métodos , Microscopia Eletrônica/instrumentação , Coloração e Rotulagem/métodos , Fixação de Tecidos/métodos , Xenopus laevis/embriologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...