Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Anal Chim Acta ; 756: 60-72, 2012 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-23176740

RESUMO

Alkaloids from the plant family of Amaryllidaceae, such as galantamine (GAL) and lycorine (LYC), are known to exhibit numerous promising biological and pharmacological activities like antibacterial, antiviral or anti-inflammatory effects. Nonetheless, studies on the biotransformation pathway are rare for this substance class, unless approval for use as medication exists. While GAL has become a prescription drug used to alleviate and delay the symptoms of Alzheimer's disease, LYC exhibits potential antitumor properties. However, it has also been linked to toxic effects resulting in nausea and emesis. Whereas there are few publications available describing the metabolic pathway of GAL in animals and humans, the metabolism of LYC is unknown. Therefore, this study is concerned with the investigation of the oxidative metabolism of GAL and LYC, which was achieved by means of three different approaches: electrochemical (EC) simulation coupled on-line to liquid chromatography (LC) with electrospray mass spectrometric (ESI-MS) detection was applied in addition to in vivo experiments in beagle dog analyzing plasma (BP) and in vitro incubations with rat liver microsomes (RLM). This way, it should be investigated if electrochemistry can be used to predict the oxidative metabolism of alkaloids. For GAL, the EC model was capable of predicting most metabolites observed during microsomal and plasma studies, including N-demethylated, dehydrogenated and oxygenated products or a combination of these. LYC was found to be metabolized far less than GAL in the animal-based approaches, but several EC oxidation products were generated. Some principal metabolic routes could successfully be correlated for this alkaloid as well, comprising dehydrogenation, dehydration to ungeremine and oxygenation reactions.


Assuntos
Alcaloides de Amaryllidaceae/metabolismo , Galantamina/metabolismo , Modelos Biológicos , Fenantridinas/metabolismo , Alcaloides de Amaryllidaceae/química , Animais , Biotransformação , Cromatografia Líquida , Cães , Técnicas Eletroquímicas , Eletroquímica , Galantamina/química , Humanos , Microssomos Hepáticos/metabolismo , Estrutura Molecular , Oxirredução , Fenantridinas/química , Ratos , Espectrometria de Massas por Ionização por Electrospray
2.
Arch Toxicol ; 85(12): 1565-73, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21626407

RESUMO

Lycorine is the main alkaloid of many Amaryllidaceae and known to cause poisoning with still unknown mechanisms. Longer lasting toxicological core symptoms of nausea and emesis may become a burden for human and animal patients and may result in substantial loss of water and electrolytes. To optimise the only empirical symptomatic antiemetic drug treatment at present, it is important to elucidate the causative involved targets of lycorine-induced emesis. Therefore, in the current study, we have tested the actions of a various antiemetic drugs with selective receptor affinities on lycorine-induced nausea and emesis in vivo in dogs. Beagle dogs were pre-treated in a saline vehicle-controlled crossover and random design with diphenhydramine, maropitant, metoclopramide, ondansetron or scopolamine prior lycorine administration (2 mg/kg subcutaneously). In vivo effects were assessed by a scoring system for nausea and emesis as well as by the number and lag time of emetic events for at least 3 h. Moreover, plasma pharmacokinetic analysis was carried out for ondansetron before and after lycorine injection. The data show that histaminergic (H1), muscarinic and dopaminergic (D2) receptors are presumably not involved in lycorine-induced emetic effects. While ondansetron significantly reduced the number of emetic events, lycorine-induced emesis was completely blocked by maropitant. Only ondansetron also significantly decreased the level of nausea and was able to prolong the lag time until onset of emesis suggesting a preferential participation of 5-HT3 receptors in lycorine-induced nausea. Thus, it is the first in vivo report evidencing that predominantly neurokinin-1 (NK1) and to a lesser extent 5-hydroxytryptamine 3 (5-HT3) receptors are involved in lycorine-induced emesis facilitating a target-oriented therapy.


Assuntos
Alcaloides de Amaryllidaceae/toxicidade , Antieméticos/farmacologia , Náusea/prevenção & controle , Fenantridinas/toxicidade , Vômito/prevenção & controle , Animais , Antieméticos/farmacocinética , Estudos Cross-Over , Cães , Sistemas de Liberação de Medicamentos , Feminino , Injeções Subcutâneas , Masculino , Náusea/induzido quimicamente , Distribuição Aleatória , Receptores da Neurocinina-1/efeitos dos fármacos , Receptores da Neurocinina-1/metabolismo , Receptores 5-HT3 de Serotonina/efeitos dos fármacos , Receptores 5-HT3 de Serotonina/metabolismo , Fatores de Tempo , Vômito/induzido quimicamente
3.
Toxicon ; 57(1): 117-24, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21055413

RESUMO

Ingestions of plant material from Amaryllidaceae, especially the bulbs of daffodils, are known to be toxic, representing a persistent cause of poisoning in human and animals. Empiric data from case reports suggested, that the alkaloid lycorine could be the toxic constituent of the multi-component mixture responsible for symptoms like nausea and emesis. Systematic studies of the in vivo effects of the amaryllidaceaeous-type alkaloids are not available. Therefore, in an open, prospective, randomized and controlled trial we studied the dose-effect relationship of lycorine-induced nausea and emesis and the toxicokinetics of lycorine in beagle dogs. Subcutaneously administered lycorine-induced nausea and emesis starting at 0.5 mg/kg body weight reaching statistical significance at 1.0 mg/kg. The maximum emetic dose of lycorine (ED(100)) was 2 mg/kg body weight. There was a correlation between dose and nausea score as well as between dose and number of the induced emetic events. Nausea and emesis were short-lasting and occurred not later than 2.5 h post dose. Lycorine showed linear plasma kinetics with a mean elimination half-life of 0.67 and 0.3 h after single s.c. and i.v. administration, compatible with the clinical course of nausea and emesis. The mean oral bioavailability was calculated to be about 40%. Biochemical and haematological parameters of safety showed no pathological signs. The results provide evidence that lycorine can be considered as a main, if not the crucial constituent responsible for nausea and emesis in human and animals in poisoning due to ingestion of plant material of the Amaryllidaceae.


Assuntos
Alcaloides de Amaryllidaceae/toxicidade , Eméticos/toxicidade , Liliaceae/química , Náusea/induzido quimicamente , Fenantridinas/toxicidade , Vômito/induzido quimicamente , Alcaloides de Amaryllidaceae/sangue , Alcaloides de Amaryllidaceae/farmacocinética , Animais , Área Sob a Curva , Disponibilidade Biológica , Cromatografia Líquida de Alta Pressão , Testes de Química Clínica , Cães , Relação Dose-Resposta a Droga , Vias de Administração de Medicamentos , Eméticos/sangue , Eméticos/farmacocinética , Feminino , Meia-Vida , Testes Hematológicos , Masculino , Fenantridinas/sangue , Fenantridinas/farmacocinética , Extratos Vegetais/sangue , Extratos Vegetais/farmacocinética , Extratos Vegetais/toxicidade , Estudos Prospectivos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...