Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Immunol Methods ; 504: 113262, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35341761

RESUMO

OBJECTIVES: Quantitative detection of interleukin-6 (IL-6) in serum and plasma can help monitor immune responses and the development of acute inflammation to guide patient management. We developed an IL-6 immunoassay for use with the automated ARCHITECT system for detecting an increase in the inflammatory response. METHODS: Immunized mouse sera were tested and selected B-cells were harvested for fusion with myeloma cells. A panel of monoclonal antibodies were produced, from which capture and detection monoclonal antibodies for the prototype IL-6 immunoassay were selected and screened on the ARCHITECT instrument. The antibody pair that most effectively captured and detected IL-6 was selected to develop a prototype IL-6 immunoassay. Calibrator and panel preparations using an internal recombinant IL-6 standard were compared to serum panels prepared with the IL-6 International Standard 89/548. Assay specificity and spike recovery were determined, and assay sensitivity was compared with the Roche EUA Elecsys IL-6 assay run on the cobas analyzer. RESULTS: Twenty-one antibodies in 441 antibody pairs were screened. The prototype IL-6 assay showed high sensitivity with an estimated limit of detection of 0.317 pg/mL and limit of quantitation of <1.27. Spike recovery was 90%-110% in serum and plasma. The internal recombinant human IL-6 calibrator showed excellent stability for 63 days at 2-8 °C. The prototype IL-6 immunoassay was specific for IL-6, exhibited no cross reactivity to related cytokines and interleukins, and was 10-fold more sensitive than the Elecsys IL-6 assay. CONCLUSIONS: The prototype ARCHITECT IL-6 automated immunoassay is a reliable and robust method for the quantitative determination of IL-6 in human serum and plasma.


Assuntos
Testes Imunológicos , Interleucina-6 , Animais , Anticorpos Monoclonais , Humanos , Imunoensaio/métodos , Fatores Imunológicos , Camundongos , Sensibilidade e Especificidade
2.
Mol Biol Cell ; 26(20): 3658-70, 2015 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-26310447

RESUMO

Heterotrimeric G protein Gα13 is known to transmit G protein-coupled receptor (GPCR) signals leading to activation of RhoA and plays a role in cell migration. The mechanism underlying the role of Gα13 in cell migration, however, remains unclear. Recently we found that Gα13 interacts with the cytoplasmic domain of integrin ß3 subunits in platelets via a conserved ExE motif. Here we show that a similar direct interaction between Gα13 and the cytoplasmic domain of the integrin ß1 subunit plays a critical role in ß1-dependent cell migration. Point mutation of either glutamic acid in the Gα13-binding (767)EKE motif in ß1 or treatment with a peptide derived from the Gα13-binding sequence of ß1 abolished Gα13-ß1 interaction and inhibited ß1 integrin-dependent cell spreading and migration. We further show that the Gα13-ß1 interaction mediates ß1 integrin-dependent Src activation and transient RhoA inhibition during initial cell adhesion, which is in contrast to the role of Gα13 in mediating GPCR-dependent RhoA activation. These data indicate that Gα13 plays dynamic roles in both stimulating RhoA via a GPCR pathway and inhibiting RhoA via an integrin signaling pathway. This dynamic regulation of RhoA activity is critical for cell migration on ß1 integrin ligands.


Assuntos
Movimento Celular/fisiologia , Subunidades alfa G12-G13 de Proteínas de Ligação ao GTP/metabolismo , Integrina beta1/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismo , Sequência de Aminoácidos , Animais , Células CHO , Adesão Celular/fisiologia , Técnicas de Cultura de Células , Cricetulus , Subunidades alfa G12-G13 de Proteínas de Ligação ao GTP/genética , Células HEK293 , Humanos , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Transdução de Sinais
3.
J Biol Chem ; 288(47): 33978-33984, 2013 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-24114843

RESUMO

We previously characterized a Gα12-specific signaling pathway that stimulates the transcription of the E3 ligase RFFL via the protein kinase ARAF and ERK. This pathway leads to persistent PKC activation and is important for sustaining fibroblast migration. However, questions remain regarding how Gα12 specifically activates ARAF, which transcription factor is involved in Gα12-mediated RFFL expression, and whether RFFL is important for cell migration stimulated by other signaling mechanisms that can activate ERK. In this study, we show that replacement of the Gα12 residue Arg-264 with Gln, which is the corresponding Gα13 residue, abrogates the ability of Gα12 to interact with or activate ARAF. We also show that Gα12 can no longer interact with and activate an ARAF mutant with its C-terminal sequence downstream of the kinase domain being replaced with the corresponding CRAF sequence. These results explain why Gα12, but not Gα13, specifically activates ARAF but not CRAF. Together with our finding that recombinant Gα12 is sufficient for stimulating the kinase activity of ARAF, this study reveals an ARAF activation mechanism that is different from that of CRAF. In addition, we show that this Gα12-ARAF-ERK pathway stimulates RFFL transcription through the transcription factor c-Myc. We further demonstrate that EGF, which signals through CRAF, and an activated BRAF mutant also activate PKC and stimulate cell migration through up-regulating RFFL expression. Thus, RFFL-mediated PKC activation has a broad significance in cell migration regulation.


Assuntos
Movimento Celular/fisiologia , Regulação Enzimológica da Expressão Gênica/fisiologia , Sistema de Sinalização das MAP Quinases/fisiologia , Ubiquitina-Proteína Ligases/biossíntese , Quinases raf/metabolismo , Substituição de Aminoácidos , Animais , Proteínas Reguladoras de Apoptose , Ativação Enzimática/fisiologia , Fator de Crescimento Epidérmico/genética , Fator de Crescimento Epidérmico/metabolismo , Subunidades alfa G12-G13 de Proteínas de Ligação ao GTP/genética , Subunidades alfa G12-G13 de Proteínas de Ligação ao GTP/metabolismo , Células HEK293 , Humanos , Camundongos , Mutação de Sentido Incorreto , Proteína Quinase C/genética , Proteína Quinase C/metabolismo , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Ubiquitina-Proteína Ligases/genética , Quinases raf/genética
4.
Structure ; 21(3): 438-48, 2013 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-23434405

RESUMO

The heterotrimeric G protein Gαq is a key regulator of blood pressure, and excess Gαq signaling leads to hypertension. A specific inhibitor of Gαq is the GTPase activating protein (GAP) known as regulator of G protein signaling 2 (RGS2). The molecular basis for how Gαq/11 subunits serve as substrates for RGS proteins and how RGS2 mandates its selectivity for Gαq is poorly understood. In crystal structures of the RGS2-Gαq complex, RGS2 docks to Gαq in a different orientation from that observed in RGS-Gαi/o complexes. Despite its unique pose, RGS2 maintains canonical interactions with the switch regions of Gαq in part because its α6 helix adopts a distinct conformation. We show that RGS2 forms extensive interactions with the α-helical domain of Gαq that contribute to binding affinity and GAP potency. RGS subfamilies that do not serve as GAPs for Gαq are unlikely to form analogous stabilizing interactions.


Assuntos
Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/química , Simulação de Dinâmica Molecular , Subunidades Proteicas/química , Proteínas RGS/química , Sequência de Aminoácidos , Animais , Sítios de Ligação , Bovinos , Cristalografia por Raios X , Escherichia coli/genética , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/genética , Humanos , Camundongos , Simulação de Acoplamento Molecular , Dados de Sequência Molecular , Mutação , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Estrutura Secundária de Proteína , Subunidades Proteicas/genética , Proteínas RGS/genética , Ratos , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Alinhamento de Sequência , Relação Estrutura-Atividade
5.
Mol Cell ; 48(6): 914-25, 2012 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-23159740

RESUMO

Vascular endothelial (VE)-cadherin homophilic adhesion controls endothelial barrier permeability through assembly of adherens junctions (AJs). We observed that loss of VE-cadherin-mediated adhesion induced the activation of Src and phospholipase C (PLC)γ2, which mediated Ca(2+) release from endoplasmic reticulum (ER) stores, resulting in activation of calcineurin (CaN), a Ca(2+)-dependent phosphatase. Downregulation of CaN activity induced phosphorylation of serine 162 in end binding (EB) protein 3. This phospho-switch was required to destabilize the EB3 dimer, suppress microtubule (MT) growth, and assemble AJs. The phospho-defective S162A EB3 mutant, in contrast, induced MT growth in confluent endothelial monolayers and disassembled AJs. Thus, VE-cadherin outside-in signaling regulates cytosolic Ca(2+) homeostasis and EB3 phosphorylation, which are required for assembly of AJs. These results identify a pivotal function of VE-cadherin homophilic interaction in modulating endothelial barrier through the tuning of MT dynamics.


Assuntos
Junções Aderentes/metabolismo , Antígenos CD/fisiologia , Caderinas/fisiologia , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/metabolismo , Processamento de Proteína Pós-Traducional , Antígenos CD/metabolismo , Caderinas/metabolismo , Calcineurina/metabolismo , Cálcio/metabolismo , Sinalização do Cálcio , Calmodulina/metabolismo , Adesão Celular , Células Cultivadas , Células Endoteliais/enzimologia , Células Endoteliais/metabolismo , Endotélio Vascular/citologia , Ativação Enzimática , Homeostase , Humanos , Cinética , Microscopia Confocal , Fosfolipase C gama/metabolismo , Fosforilação , Ligação Proteica , Imagem com Lapso de Tempo , Quinases da Família src/metabolismo
6.
Proc Natl Acad Sci U S A ; 108(29): 11884-9, 2011 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-21730168

RESUMO

Evidence for cooperation between actin nucleators is growing. The WH2-containing nucleator Spire and the formin Cappuccino interact directly, and both are essential for assembly of an actin mesh during Drosophila oogenesis. Their interaction requires the kinase noncatalytic C-lobe domain (KIND) domain of Spire and the C-terminal tail of the formin. Here we describe the crystal structure of the KIND domain of human Spir1 alone and in complex with the tail of Fmn2, a mammalian ortholog of Cappuccino. The KIND domain is structurally similar to the C-lobe of protein kinases. The Fmn2 tail is coordinated in an acidic cleft at the base of the domain that appears to have evolved via deletion of a helix from the canonical kinase fold. Our functional analysis of Cappuccino reveals an unexpected requirement for its tail in actin assembly. In addition, we find that the KIND/tail interaction blocks nucleation by Cappuccino and promotes its displacement from filament barbed ends providing insight into possible modes of cooperation between Spire and Cappuccino.


Assuntos
Actinas/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas dos Microfilamentos/metabolismo , Modelos Moleculares , Proteínas do Tecido Nervoso/química , Oogênese/fisiologia , Conformação Proteica , Estrutura Terciária de Proteína/genética , Animais , Cristalização , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Drosophila melanogaster , Polarização de Fluorescência , Humanos , Proteínas dos Microfilamentos/química , Proteínas dos Microfilamentos/genética
7.
Cell Signal ; 19(8): 1681-9, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17449226

RESUMO

Galpha12 and Galpha13 transduce signals from G protein-coupled receptors to RhoA through RhoGEFs containing an RGS homology (RH) domain, such as p115 RhoGEF or leukemia-associated RhoGEF (LARG). The RH domain of p115 RhoGEF or LARG binds with high affinity to active forms of Galpha12 and Galpha13 and confers specific GTPase-activating protein (GAP) activity, with faster GAP responses detected in Galpha13 than in Galpha12. At the same time, Galpha13, but not Galpha12, directly stimulates the RhoGEF activity of p115 RhoGEF or nonphosphorylated LARG in reconstitution assays. In order to better understand the molecular mechanism by which Galpha13 regulates RhoGEF activity through interaction with RH-RhoGEFs, we sought to identify the region(s) of Galpha13 involved in either the GAP response or RhoGEF activation. For this purpose, we generated chimeras between Galpha12 and Galpha13 subunits and characterized their biochemical activities. In both cell-based and reconstitution assays of RhoA activation, we found that replacing the carboxyl-terminal region of Galpha12 (residues 267-379) with that of Galpha13 (residues 264-377) conferred gain-of-function to the resulting chimeric subunit, Galpha12C13. The inverse chimera, Galpha13C12, exhibited basal RhoA activation which was similar to Galpha12. In contrast to GEF assays, GAP assays showed that Galpha12C13 or Galpha13C12 chimeras responded to the GAP activity of p115 RhoGEF or LARG in a manner similar to Galpha12 or Galpha13, respectively. We conclude from these results that the carboxyl-terminal region of Galpha13 (residues 264-377) is essential for its RhoGEF stimulating activity, whereas the amino-terminal alpha helical and switch regions of Galpha12 and Galpha13 are responsible for their differential GAP responses to the RH domain.


Assuntos
Subunidades alfa G12-G13 de Proteínas de Ligação ao GTP/química , Subunidades alfa G12-G13 de Proteínas de Ligação ao GTP/metabolismo , Proteínas RGS/química , Proteínas rho de Ligação ao GTP/química , Proteínas rho de Ligação ao GTP/metabolismo , Animais , Baculoviridae/genética , Células HeLa , Humanos , Modelos Biológicos , Estrutura Terciária de Proteína , Proteínas Recombinantes de Fusão/isolamento & purificação , Proteínas Recombinantes de Fusão/metabolismo , Spodoptera/citologia , Spodoptera/metabolismo , Spodoptera/virologia , Proteínas rho de Ligação ao GTP/genética , Proteína rhoA de Ligação ao GTP/metabolismo
8.
Biochemistry ; 45(1): 167-74, 2006 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-16388592

RESUMO

The oncogenic G(12/13) subfamily of heterotrimeric G proteins transduces extracellular signals that regulate the actin cytoskeleton, cell cycle progression, and gene transcription. Previously, structural analyses of fully functional G alpha(12/13) subunits have been hindered by insufficient amounts of homogeneous, functional protein. Herein, we report that substitution of the N-terminal helix of G alpha(i1) for the corresponding region of G alpha12 or G alpha13 generated soluble chimeric subunits (G alpha(i/12) and G alpha(i/13)) that could be purified in sufficient amounts for crystallographic studies. Each chimera bound guanine nucleotides, G betagamma subunits, and effector proteins and exhibited GAP responses to p115RhoGEF and leukemia-associated RhoGEF. Like their wild-type counterparts, G alpha(i/13), but not G alpha(i/12), stimulated the activity of p115RhoGEF. Crystal structures of the G alpha(i/12) x GDP x AlF4(-) and G alpha(i/13) x GDP complexes were determined using diffraction data extending to 2.9 and 2.0 A, respectively. These structures reveal not only the native structural features of G alpha12 and G alpha13 subunits, which are expected to be important for their interactions with GPCRs and effectors such as G alpha-regulated RhoGEFs, but also novel conformational changes that are likely coupled to GTP hydrolysis in the G alpha(12/13) class of heterotrimeric G proteins.


Assuntos
Subunidades alfa G12-G13 de Proteínas de Ligação ao GTP/química , Subunidades alfa G12-G13 de Proteínas de Ligação ao GTP/metabolismo , Animais , Sítios de Ligação , Células Cultivadas , Quimera/genética , Quimera/metabolismo , Cristalografia por Raios X , Subunidades alfa G12-G13 de Proteínas de Ligação ao GTP/genética , Subunidades alfa G12-G13 de Proteínas de Ligação ao GTP/isolamento & purificação , Subunidades beta da Proteína de Ligação ao GTP/química , Subunidades beta da Proteína de Ligação ao GTP/genética , Subunidades beta da Proteína de Ligação ao GTP/metabolismo , Subunidades gama da Proteína de Ligação ao GTP/química , Subunidades gama da Proteína de Ligação ao GTP/genética , Subunidades gama da Proteína de Ligação ao GTP/metabolismo , Proteínas Ativadoras de GTPase/química , Proteínas Ativadoras de GTPase/genética , Proteínas Ativadoras de GTPase/metabolismo , Fatores de Troca do Nucleotídeo Guanina/genética , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Nucleotídeos de Guanina/química , Nucleotídeos de Guanina/genética , Nucleotídeos de Guanina/metabolismo , Leucemia/metabolismo , Conformação Proteica , Proteínas Proto-Oncogênicas/química , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Fatores de Troca de Nucleotídeo Guanina Rho
9.
Mol Pharmacol ; 67(3): 789-97, 2005 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-15550677

RESUMO

Serum response factor (SRF) is activated by contractile and hypertrophic agonists, such as endothelin-1 (ET1) to stimulate expression of cytoskeletal proteins in vascular smooth muscle cells (VSMCs). While studying the regulation of smooth muscle alpha-actin (SMA) expression at the level of protein stability, we discovered that inhibition of proteasome-dependent protein degradation by N-benzoyloxycarbonyl (Z)-Leu-Leu-leucinal (MG132) or lactacystin (LC) did not enhance the levels of SMA, but, unexpectedly, attenuated SMA expression in response to ET1, without affecting the viability of VSMCs. Down-regulation of SMA protein by MG132 or LC occurred at the level of SMA transcription and via the inhibition of SRF activity. By contrast, MG132 and LC potentiated the activity of activator protein-1 transcription factor. Regulation of SRF by MG132 was not related to inhibition of nuclear factor-kappaB, an established target of proteasome inhibitors, and was not mediated by protein kinase A, a powerful regulator of SRF activity. Signaling studies indicate that inhibition of ET1-induced SRF activity by MG132 occurs at the level downstream of heterotrimeric G proteins Gq/11 and G13, of small GTPase RhoA, and of actin dynamics but at the level of SRF-DNA binding. MG132 treatment did not result in ubiquitination or accumulation of SRF. By contrast, the levels of c-Jun were rapidly increased upon incubation of cells with MG132, and ectopic overexpression of c-Jun mimicked the effect of MG132 on SRF activity. Together, these data suggest that inhibition of proteasome results in down-regulation of SMA expression via up-regulation of c-Jun and repression of SRF activity at the level of DNA binding.


Assuntos
Regulação da Expressão Gênica/efeitos dos fármacos , Músculo Liso Vascular/fisiologia , Inibidores de Proteases/farmacologia , Inibidores de Proteassoma , Fator de Resposta Sérica/fisiologia , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Dipeptídeos/farmacologia , Células HeLa , Humanos , Músculo Liso Vascular/citologia , Músculo Liso Vascular/efeitos dos fármacos , Oligopeptídeos/farmacologia , Ratos , Ratos Endogâmicos WKY
10.
Methods Enzymol ; 390: 285-94, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-15488184

RESUMO

Three mammalian Rho guanine nucleotide exchange factors (RhoGEFs), leukemia-associated RhoGEF (LARG), p115RhoGEF, and PDZ-RhoGEF, contain regulator of G-protein signaling (RGS) domains within their amino-terminal regions. These RhoGEFs link signals from heterotrimeric G12/13 protein-coupled receptors to Rho GTPase activation, leading to various cellular responses, such as actin reorganization and gene expression. The activity of these RhoGEFs is regulated by Galpha12/13 through their RGS domains. Because RhoGEFs stimulate guanine nucleotide exchange by Rho GTPases, RhoGEF activation can be measured by monitoring GTP binding to or GDP dissociation from Rho GTPases. This article describes methods used to perform reconstitution assays to measure the activity of RhoGEFs regulated by Galpha12/13.


Assuntos
Subunidades alfa G12-G13 de Proteínas de Ligação ao GTP/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Proteínas RGS/metabolismo , Animais , Linhagem Celular , Subunidades alfa G12-G13 de Proteínas de Ligação ao GTP/isolamento & purificação , Fatores de Troca do Nucleotídeo Guanina/isolamento & purificação , Guanosina 5'-O-(3-Tiotrifosfato)/metabolismo , Guanosina Difosfato/metabolismo , Fosforilação , Fatores de Troca de Nucleotídeo Guanina Rho , Proteína rhoA de Ligação ao GTP/isolamento & purificação , Proteína rhoA de Ligação ao GTP/metabolismo
11.
Mol Pharmacol ; 66(4): 1029-34, 2004 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-15258251

RESUMO

Heterotrimeric G proteins of the G12 family regulate the Rho GTPase through RhoGEFs that contain an amino-terminal regulator of G protein signaling (RGS) domain (RGS-RhoGEFs). Direct regulation of the activity of RGS-RhoGEFs p115 or leukemia-associated RhoGEF (LARG) by Galpha13 has previously been demonstrated. However, the precise biochemical mechanism by which Galpha13 stimulates the RhoGEF activity of these proteins has not yet been well understood. Based on the crystal structure of Galphai1 in complex with RGS4, we mutated the Galpha13 residue lysine 204 to alanine (Galpha13K204A) and characterized the effect of this mutation in its regulation of RGS-RhoGEFs p115 or LARG. Compared with wild-type Galpha13, Galpha13K204A induced much less serum-response factor activation when expressed in HeLa cells. Recombinant Galpha13K204A exhibits normal function in terms of nucleotide binding, basal GTP hydrolysis, and formation of heterotrimer with betagamma. We found that lysine 204 of Galpha13 is important for interaction with the RGS domain of p115 or LARG and for the GTPase-activating protein activity of these proteins. In addition, the K204A mutation of Galpha13 impaired its regulation of the RhoGEF activity of p115 or LARG. We conclude that lysine 204 of Galpha13 is important for interaction with RGS-RhoGEFs and is critically involved in the regulation of their activity.


Assuntos
Subunidades alfa G12-G13 de Proteínas de Ligação ao GTP/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Lisina/fisiologia , Alanina/genética , Substituição de Aminoácidos , Animais , Células COS , Fatores de Troca do Nucleotídeo Guanina/genética , Células HeLa , Humanos , Leucemia/metabolismo , Lisina/genética , Mutação , Fatores de Troca de Nucleotídeo Guanina Rho
12.
Nat Cell Biol ; 5(12): 1095-103, 2003 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-14634662

RESUMO

G alpha 13 stimulates the guanine nucleotide exchange factors (GEFs) for Rho, such as p115Rho-GEF. Activated Rho induces numerous cellular responses, including actin polymerization, serum response element (SRE)-dependent gene transcription and transformation. p115Rho-GEF contains a Regulator of G protein Signalling domain (RGS box) that confers GTPase activating protein (GAP) activity towards G alpha 12 and G alpha 13 (ref. 3). In contrast, classical RGS proteins (such as RGS16 and RGS4) exhibit RGS domain-dependent GAP activity on G alpha i and G alpha q, but not G alpha 12 or G alpha 13 (ref 4). Here, we show that RGS16 inhibits G alpha 13-mediated, RhoA-dependent reversal of stellation and SRE activation. The RGS16 amino terminus binds G alpha 13 directly, resulting in translocation of G alpha 13 to detergent-resistant membranes (DRMs) and reduced p115Rho-GEF binding. RGS4 does not bind G alpha 13 or attenuate G alpha 13-dependent responses, and neither RGS16 nor RGS4 affects G alpha 12-mediated signalling. These results elucidate a new mechanism whereby a classical RGS protein regulates G alpha 13-mediated signal transduction independently of the RGS box.


Assuntos
Subunidades alfa G12-G13 de Proteínas de Ligação ao GTP/metabolismo , Proteínas/metabolismo , Proteínas RGS/metabolismo , Transdução de Sinais/fisiologia , Proteínas rho de Ligação ao GTP/metabolismo , Linhagem Celular Tumoral , Retroalimentação Fisiológica/genética , Regulação da Expressão Gênica/genética , Genes Reguladores/genética , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Humanos , Ligação Proteica/genética , Estrutura Terciária de Proteína/genética , Fatores de Troca de Nucleotídeo Guanina Rho
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...