Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Med (Lausanne) ; 7: 50, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32181253

RESUMO

In recent years inhaled systems have shown momentum as patient-personalized therapies emerge. A significant improvement in terms of therapeutic efficacy and/or reduction adverse systemic effects is anticipated from their use owing these systems regional accumulation. Nevertheless, whatever safety and efficacy evidence required for inhaled formulations regulatory approval, it still poses an additional hurdle to gaining market access. In contrast with the formal intravenous medicines approval, the narrower adoption of pulmonary administration might rely on discrepancies in pre-clinical and clinical data provided by the marketing authorization holder to the regulatory authorities. Evidences of a diverse and inconsistent regulatory framework led to concerns over toxicity issues and respiratory safety. However, an overall trend to support general concepts of good practices exists. Current regulatory guidelines that supports PK/PD (pharmacokinetics/pharmacodynamic) assessment seeks attention threatening those inhaled formulations set to be approved in the coming years. A more complex scenario arises from the attempt of implementing nanomedicines for pulmonary administration. Cutting-edge image techniques could play a key role in supporting diverse stages of clinical development facilitating this pharmaceutics take off and speed to patients. The ongoing challenge in adapting conventional regulatory frameworks has proven to be tremendously difficult in an environment where market entry relies on multiple collections of evidence. This paper intention is to remind us that an acceptable pre-clinical toxicological program could emerge from, but not only, an accurate and robust data imaging collection. It is our conviction that if implemented, inhaled nanomedicines might have impact in multiple severe conditions, such as lung cancer, by fulfilling the opportunity for developing tailored treatments while solving dose-related toxicity issues; the most limiting threat in conventional lung cancer clinical management.

2.
Pharm Res ; 36(6): 83, 2019 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-30989413

RESUMO

PURPOSE: Salinomycin (SAL) is a polyether compound that exhibits strong antimicrobial as well as anticancer activity. Nanomedicine has been at the forefront of drug delivery research with the aim of increasing the efficacy, specificity and reduce toxicity of drugs. There is an intersection between infection and cancer, and cancer patients are prone to bacterial infections. In this study, polymeric micelles were prepared using Pluronic® F127 (PM) to encapsulate SAL (PM_SAL) with the view of enhancing antimicrobial and anticancer activity. METHODS: A Quality by Design (QbD) approach was utilized to synthesize PM_SAL, and nanoformulation activity was determined against bacterial (S. aureus, MRSA and E. coli). Effects on cancer cell line A549, i.e. cell viability, prevention of P-gp efflux, vimentin expression, effects on migratory ability of A549 cells. Anticancer activity was determined by ability to eradicate cancer stem-like cells. RESULTS: PM_SAL demonstrated only efficacy against MRSA, being even higher than that obtained with SAL. In A549 cells, a 15-fold increase in P-gp's expression as well as a significant decrease of the cell's migration, was observed. CONCLUSIONS: PM_SAL can interfere with the oncogenic protein VIM, involved in the crucial mechanisms EMT, downregulating its expression. Altogether data obtained indicates that this antibiotic and the developed polymeric micelle system is a very promising inhibitor of tumor cell growth.


Assuntos
Anti-Infecciosos/química , Antineoplásicos/química , Portadores de Fármacos/química , Poloxâmero/química , Piranos/química , Células A549 , Anti-Infecciosos/farmacologia , Antineoplásicos/farmacologia , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Liberação Controlada de Fármacos , Escherichia coli/efeitos dos fármacos , Humanos , Micelas , Células-Tronco Neoplásicas/citologia , Células-Tronco Neoplásicas/efeitos dos fármacos , Tamanho da Partícula , Piranos/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Propriedades de Superfície , Vimentina/genética
3.
Eur J Pharm Biopharm ; 110: 76-84, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27810470

RESUMO

Multidrug resistance (MDR), whereby cancer cells become resistant to the cytotoxic effects of various structurally and mechanistically unrelated chemotherapeutic agents, is a major problem in the clinical treatment of cancer. P-glycoprotein (P-gp) is a transmembrane protein responsible for drug efflux, which decreases drug intracellular bioavailability, consequently decreasing their efficacy against cancer. Solid Lipid Nanoparticles (SLNs) have not only the ability to protect the entrapped drug against proteolytic degradation, but also allow a selective intracellular targeting. Hypothetically, the entrapped drug enter the target cells by different uptake mechanisms, "nanocitose", as compared to the free drug and may evade efflux-transporters, like P-gp. The functional role of P-gp in limiting the permeability of the anticancer drug paclitaxel (Ptx) was assessed in MDA-MB-436 cells. The observed increase in the pharmacologic efficacy of drug entrapped in SLN relatively to the free drug indicates that this system is shielding the drug. Therefore, "blinding" the nanoparticle from the efflux transporters. The effect was confirmed by the decrease expression of P-gp with loaded-SLNs and through the impact on cellular MDR1 expression. Besides the ability to prevent MDR events, functionalization of SLN with a specific antibody against membrane receptors (anti-CD44v6) improves the nanoparticle capability to target selectively malignant cells. This results allow to anticipate that poor clinical outcomes related to tumour P-gp overexpression might be overcome in a near future.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Lipídeos/química , Nanopartículas/química , Antineoplásicos/administração & dosagem , Linhagem Celular Tumoral , Sobrevivência Celular , Portadores de Fármacos , Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Humanos , Receptores de Hialuronatos/química , Receptores de Hialuronatos/metabolismo , Imuno-Histoquímica , Neoplasias/tratamento farmacológico , Paclitaxel/administração & dosagem , Tamanho da Partícula , Ligação Proteica , Software , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...