Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(11)2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38892444

RESUMO

Although glaucoma is a leading cause of irreversible blindness worldwide, its pathogenesis is incompletely understood, and intraocular pressure (IOP) is the only modifiable risk factor to target the disease. Several associations between the gut microbiome and glaucoma, including the IOP, have been suggested. There is growing evidence that interactions between microbes on the ocular surface, termed the ocular surface microbiome (OSM), and tear proteins, collectively called the tear proteome, may also play a role in ocular diseases such as glaucoma. This study aimed to find characteristic features of the OSM and tear proteins in patients with glaucoma. The whole-metagenome shotgun sequencing of 32 conjunctival swabs identified Actinobacteria, Firmicutes, and Proteobacteria as the dominant phyla in the cohort. The species Corynebacterium mastitidis was only found in healthy controls, and their conjunctival microbiomes may be enriched in genes of the phospholipase pathway compared to glaucoma patients. Despite these minor differences in the OSM, patients showed an enrichment of many tear proteins associated with the immune system compared to controls. In contrast to the OSM, this emphasizes the role of the proteome, with a potential involvement of immunological processes in glaucoma. These findings may contribute to the design of new therapeutic approaches targeting glaucoma and other associated diseases.


Assuntos
Glaucoma , Microbiota , Proteoma , Lágrimas , Humanos , Glaucoma/metabolismo , Glaucoma/microbiologia , Proteoma/metabolismo , Masculino , Feminino , Lágrimas/metabolismo , Pessoa de Meia-Idade , Proteínas do Olho/metabolismo , Proteínas do Olho/genética , Idoso , Túnica Conjuntiva/metabolismo , Túnica Conjuntiva/microbiologia , Metagenoma , Adulto
2.
J Neuroinflammation ; 21(1): 120, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38715051

RESUMO

BACKGROUND: The human gut microbiome (GM) is involved in inflammation and immune response regulation. Dysbiosis, an imbalance in this ecosystem, facilitates pathogenic invasion, disrupts immune equilibrium, and potentially triggers diseases including various human leucocyte antigen (HLA)-B27-associated autoinflammatory and autoimmune diseases such as inflammatory bowel disease (IBD) and spondyloarthropathy (SpA). This study assesses compositional and functional alterations of the GM in patients with HLA-B27-associated non-infectious anterior uveitis (AU) compared to healthy controls. METHODS: The gut metagenomes of 20 patients with HLA-B27-associated non-infectious AU, 21 age- and sex-matched HLA-B27-negative controls, and 6 HLA-B27-positive healthy controls without a history of AU were sequenced using the Illumina NovaSeq 6000 platform for whole metagenome shotgun sequencing. To identify taxonomic and functional features with significantly different relative abundances between groups and to identify associations with clinical metadata, the multivariate association by linear models (MaAsLin) R package was applied. RESULTS: Significantly higher levels of the Eubacterium ramulus species were found in HLA-B27-negative controls (p = 0.0085, Mann-Whitney U-test). No significant differences in microbial composition were observed at all other taxonomic levels. Functionally, the lipid IVA biosynthesis pathway was upregulated in patients (p < 0.0001, Mann-Whitney U-test). A subgroup analysis comparing patients with an active non-infectious AU to their age- and sex-matched HLA-B27-negative controls, showed an increase of the species Phocaeicola vulgatus in active AU (p = 0.0530, Mann-Whitney U-test). An additional analysis comparing AU patients to age- and sex-matched HLA-B27-positive controls, showed an increase of the species Bacteroides caccae in controls (p = 0.0022, Mann-Whitney U-test). CONCLUSION: In our cohort, non-infectious AU development is associated with compositional and functional alterations of the GM. Further research is needed to assess the causality of these associations, offering potentially novel therapeutic strategies.


Assuntos
Microbioma Gastrointestinal , Antígeno HLA-B27 , Uveíte Anterior , Humanos , Antígeno HLA-B27/genética , Antígeno HLA-B27/imunologia , Feminino , Masculino , Microbioma Gastrointestinal/fisiologia , Pessoa de Meia-Idade , Uveíte Anterior/microbiologia , Uveíte Anterior/imunologia , Adulto , Estudos de Casos e Controles , Idoso
3.
Allergy ; 79(4): 937-948, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38317432

RESUMO

BACKGROUND: Dupilumab is used for the treatment of atopic dermatitis (AD). Approximately one third of AD patients develop a dupilumab-associated ocular surface disease (DAOSD), of which the pathomechanism is poorly understood. This study aimed at investigating inflammatory markers in tear fluids of patients on dupilumab therapy. METHODS: Tear fluids were collected from AD patients with DAOSD (ADwDAOSD), AD patients without DAOSD (ADw/oDAOSD), and non-AD patients before and during dupilumab therapy, and analyzed using a specialized proteomic approach quantifying inflammatory markers. The ocular surface microbiome was determined by next generation sequencing technology. RESULTS: Upon dupilumab therapy, an upregulation of 31 inflammatory markers was observed in DAOSD tear fluids compared to baseline in AD patients. While IL-12B was upregulated in both ADwDAOSD and ADw/oDAOSD groups, the pattern of inflammatory markers significantly differed between groups and over time. In the ADwDAOSD group, a shift from a mixed Th2/Th17 pattern at baseline toward a Th1/Th17 profile under dupilumab was observed. Furthermore, an upregulation of remodeling and fibrosis markers was seen in DAOSD. Semantic map and hierarchical cluster analyses of baseline marker expression revealed four clusters distinguishing between AD and non-AD as well as ADwDAOSD and ADw/oDAOSD patient groups. In a pilot study, dupilumab therapy was associated with a decrease in richness of the ocular surface microbiome. CONCLUSIONS: DAOSD is characterized by a Th1/Th17 cytokine profile and an upregulation of markers known to promote remodeling and fibrosis. The expression pattern of inflammatory markers in tear fluids at baseline might serve as a prognostic factor for DAOSD.


Assuntos
Anticorpos Monoclonais Humanizados , Dermatite Atópica , Oftalmopatias , Humanos , Projetos Piloto , Proteômica , Dermatite Atópica/diagnóstico , Dermatite Atópica/tratamento farmacológico , Dermatite Atópica/metabolismo , Inflamação , Fibrose , Índice de Gravidade de Doença , Resultado do Tratamento
4.
Proc Natl Acad Sci U S A ; 120(44): e2310134120, 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37878725

RESUMO

Plants exude specialized metabolites from their roots, and these compounds are known to structure the root microbiome. However, the underlying mechanisms are poorly understood. We established a representative collection of maize root bacteria and tested their tolerance against benzoxazinoids (BXs), the dominant specialized and bioactive metabolites in the root exudates of maize plants. In vitro experiments revealed that BXs inhibited bacterial growth in a strain- and compound-dependent manner. Tolerance against these selective antimicrobial compounds depended on bacterial cell wall structure. Further, we found that native root bacteria isolated from maize tolerated the BXs better compared to nonhost Arabidopsis bacteria. This finding suggests the adaptation of the root bacteria to the specialized metabolites of their host plant. Bacterial tolerance to 6-methoxy-benzoxazolin-2-one (MBOA), the most abundant and selective antimicrobial metabolite in the maize rhizosphere, correlated significantly with the abundance of these bacteria on BX-exuding maize roots. Thus, strain-dependent tolerance to BXs largely explained the abundance pattern of bacteria on maize roots. Abundant bacteria generally tolerated MBOA, while low abundant root microbiome members were sensitive to this compound. Our findings reveal that tolerance to plant specialized metabolites is an important competence determinant for root colonization. We propose that bacterial tolerance to root-derived antimicrobial compounds is an underlying mechanism determining the structure of host-specific microbial communities.


Assuntos
Anti-Infecciosos , Arabidopsis , Microbiota , Zea mays/metabolismo , Raízes de Plantas/metabolismo , Bactérias/metabolismo , Plantas/metabolismo , Rizosfera , Benzoxazinas/farmacologia , Benzoxazinas/metabolismo , Arabidopsis/metabolismo , Anti-Infecciosos/metabolismo , Microbiologia do Solo
5.
Front Cell Infect Microbiol ; 13: 1232147, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37727808

RESUMO

Purpose: The low microbial abundance on the ocular surface results in challenges in the characterization of its microbiome. The purpose of this study was to reveal factors introducing bias in the pipeline from sample collection to data analysis of low-abundant microbiomes. Methods: Lower conjunctiva and lower lid swabs were collected from six participants using either standard cotton or flocked nylon swabs. Microbial DNA was isolated with two different kits (with or without prior host DNA depletion and mechanical lysis), followed by whole-metagenome shotgun sequencing with a high sequencing depth set at 60 million reads per sample. The relative microbial compositions were generated using the two different tools MetaPhlan3 and Kraken2. Results: The total amount of extracted DNA was increased by using nylon flocked swabs on the lower conjunctiva. In total, 269 microbial species were detected. The most abundant bacterial phyla were Actinobacteria, Firmicutes and Proteobacteria. Depending on the DNA extraction kit and tool used for profiling, the microbial composition and the relative abundance of viruses varied. Conclusion: The microbial composition on the ocular surface is not dependent on the swab type, but on the DNA extraction method and profiling tool. These factors have to be considered in further studies about the ocular surface microbiome and other sparsely colonized microbiomes in order to improve data reproducibility. Understanding challenges and biases in the characterization of the ocular surface microbiome may set the basis for microbiome-altering interventions for treatment of ocular surface associated diseases.


Assuntos
Microbiota , Nylons , Humanos , Reprodutibilidade dos Testes , Face , Túnica Conjuntiva
6.
Front Immunol ; 13: 1099357, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36685557

RESUMO

Dendritic and monocytic cells co-operate to initiate and shape adaptive immune responses in secondary lymphoid tissue. The complexity of this system is poorly understood, also because of the high phenotypic and functional plasticity of monocytic cells. We have sequenced mononuclear phagocytes in mesenteric lymph nodes (LN) of three adult cows at the single-cell level, revealing ten dendritic-cell (DC) clusters and seven monocyte/macrophage clusters with clearly distinct transcriptomic profiles. Among DC, we defined LN-resident subsets and their progenitors, as well as subsets of highly activated migratory DC differing in transcript levels for T-cell attracting chemokines. Our analyses also revealed a potential differentiation path for cDC2, resulting in a cluster of inflammatory cDC2 with close transcriptional similarity to putative DC3 and monocyte-derived DC. Monocytes and macrophages displayed sub-clustering mainly driven by pro- or anti-inflammatory expression signatures, including a small cluster of cycling, presumably self-renewing, macrophages. With this transcriptomic snapshot of LN-derived mononuclear phagocytes, we reveal functional properties and differentiation trajectories in a "command center of immunity", and identify elements that are conserved across species.


Assuntos
Células Dendríticas , Transcriptoma , Feminino , Bovinos , Animais , Sistema Fagocitário Mononuclear , Monócitos , Linfonodos , Quimiocinas
7.
Front Plant Sci ; 10: 586, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31139202

RESUMO

DNA barcoding of herbal medicines has been mainly concerned with authentication of products in trade and has raised awareness of species substitution and adulteration. More recently DNA barcodes have been included in pharmacopoeias, providing tools for regulatory purposes. The commonly used DNA barcoding regions in plants often fail to resolve identification to species level. This can be especially challenging in evolutionarily complex groups where incipient or reticulate speciation is ongoing. In this study, we take a phylogenomic approach, analyzing whole plastid sequences from the evolutionarily complex genus Berberis in order to develop DNA barcodes for the medicinally important species Berberis aristata. The phylogeny reconstructed from an alignment of ∼160 kbp of chloroplast DNA for 57 species reveals that the pharmacopoeial species in question is polyphyletic, complicating development of a species-specific DNA barcode. Instead we propose a DNA barcode that is clade specific, using our phylogeny to define Operational Phylogenetic Units (OPUs). The plastid alignment is then reduced to small, informative DNA regions including nucleotides diagnostic for these OPUs. These DNA barcodes were tested on commercial samples, and shown to discriminate plants in trade and therefore to meet the requirement of a pharmacopoeial standard. The proposed method provides an innovative approach for inferring DNA barcodes for evolutionarily complex groups for regulatory purposes and quality control.

8.
Genes (Basel) ; 10(4)2019 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-30970623

RESUMO

There is considerable potential for the use of DNA barcoding methods to authenticate raw medicinal plant materials, but their application to testing commercial products has been controversial. A simple PCR test targeting species-specific sequences within the nuclear ribosomal internal transcribed spacer (ITS) region was adapted to screen commercial products for the presence of Hypericum perforatum L. material. DNA differing widely in amount and extent of fragmentation was detected in a number of product types. Two assays were designed to further analyse this DNA using a curated database of selected Hypericum ITS sequences: A qPCR assay based on a species-specific primer pair spanning the ITS1 and ITS2 regions, using synthetic DNA reference standards for DNA quantitation and a Next Generation Sequencing (NGS) assay separately targeting the ITS1 and ITS2 regions. The ability of the assays to detect H. perforatum DNA sequences in processed medicines was investigated. Out of twenty different matrices tested, both assays detected H. perforatum DNA in five samples with more than 10³ ITS copies µL-1 DNA extract, whilst the qPCR assay was also able to detect lower levels of DNA in two further samples. The NGS assay confirmed that H. perforatum was the major species in all five positive samples, though trace contaminants were also detected.


Assuntos
Código de Barras de DNA Taxonômico , DNA Espaçador Ribossômico/genética , Hypericum/genética , Plantas Medicinais/genética , DNA/genética , DNA de Plantas/genética , Hypericum/classificação , Extratos Vegetais/classificação , Extratos Vegetais/genética , Plantas Medicinais/classificação
9.
Food Chem ; 245: 989-996, 2018 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-29287470

RESUMO

The lichen Cetraria islandica or Iceland Moss is commonly consumed as tea, food ingredients (e.g. in soup or bread) and herbal medicines. C. islandica, which has two chemotypes, can be difficult to distinguish from the sister species Cetraria ericetorum. They are collectively referred to as the Cetraria islandica species complex. This study aimed to use an UPLC-QToF-MS chemical profiling together with DNA barcoding to distinguish species and chemotypes of the C. islandica species complex. Our results show that the two chemotypes of C. islandica are clearly distinguishable from each other and from C. ericetorum by the chemometric approach. The RPB2 barcode was able to differentiate C. islandica from C. ericetorum with a barcode gap, but the widely used nrITS barcode failed. Neither of them could discriminate chemotypes of C. islandica. In conclusion, this integrative approach involving chemical profiling and DNA barcoding could be applied for authentication of Iceland Moss materials.


Assuntos
Código de Barras de DNA Taxonômico , Parmeliaceae/química , Parmeliaceae/classificação , Cromatografia Líquida de Alta Pressão , Fraude/prevenção & controle , Espectrometria de Massas , Parmeliaceae/genética
11.
Planta Med ; 83(14-15): 1117-1129, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28662530

RESUMO

DNA barcoding methods originally developed for the identification of plant specimens have been applied to the authentication of herbal drug materials for industrial quality assurance. These methods are intended to be complementary to current morphological and chemical methods of identification. The adoption of these methods by industry will be accelerated by the introduction of DNA-based identification techniques into regulatory standards and monographs. The introduction of DNA methods into the British Pharmacopoeia is described, along with a reference standard for use as a positive control for DNA extraction and polymerase chain reaction (PCR). A general troubleshooting chart is provided to guide the user through the problems that may be encountered during this process. Nevertheless, the nature of the plant materials and the demands of industrial quality control procedures mean that conventional DNA barcoding is not the method of choice for industrial quality control. The design of DNA barcode-targeted quantitative PCR and high resolution melt curve tests is one strategy for developing rapid, robust, and reliable protocols for high-throughput screening of raw materials. The development of authentication tests for wild-harvested Rhodiola rosea L. is used as a case study to exemplify these relatively simple tests. By way of contrast, the application of next-generation sequencing to create a complete profile of all the biological entities in a mixed herbal drug is described and its potential for industrial quality assurance discussed.


Assuntos
Código de Barras de DNA Taxonômico/métodos , Medicina Herbária/normas , Plantas Medicinais/classificação , Biologia Computacional , União Europeia , Sequenciamento de Nucleotídeos em Larga Escala , Controle de Qualidade , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...