Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Biol Cell ; 19(10): 4492-505, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18701704

RESUMO

Autophagy is a diverse family of processes that transport cytoplasm and organelles into the lysosome/vacuole lumen for degradation. During macroautophagy cargo is packaged in autophagosomes that fuse with the lysosome/vacuole. During microautophagy cargo is directly engulfed by the lysosome/vacuole membrane. Piecemeal microautophagy of the nucleus (PMN) occurs in Saccharomyces cerevisiae at nucleus-vacuole (NV) junctions and results in the pinching-off and release into the vacuole of nonessential portions of the nucleus. Previous studies concluded macroautophagy ATG genes are not absolutely required for PMN. Here we report using two biochemical assays that PMN is efficiently inhibited in atg mutant cells: PMN blebs are produced, but vesicles are rarely released into the vacuole lumen. Electron microscopy of arrested PMN structures in atg7, atg8, and atg9 mutant cells suggests that NV-junction-associated micronuclei may normally be released from the nucleus before their complete enclosure by the vacuole membrane. In this regard PMN is similar to the microautophagy of peroxisomes (micropexophagy), where the side of the peroxisome opposite the engulfing vacuole is capped by a structure called the "micropexophagy-specific membrane apparatus" (MIPA). The MIPA contains Atg proteins and facilitates terminal enclosure and fusion steps. PMN does not require the complete vacuole homotypic fusion genes. We conclude that a spectrum of ATG genes is required for the terminal vacuole enclosure and fusion stages of PMN.


Assuntos
Autofagia , Núcleo Celular/metabolismo , Regulação da Expressão Gênica , Saccharomyces cerevisiae/metabolismo , Núcleo Celular/fisiologia , Retículo Endoplasmático/metabolismo , Regulação Fúngica da Expressão Gênica , Proteínas de Fluorescência Verde/metabolismo , Microscopia de Fluorescência , Modelos Biológicos , Mutação , Membrana Nuclear/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Vacúolos/metabolismo
2.
Telemed J ; 3(1): 11-7, 1997.
Artigo em Inglês | MEDLINE | ID: mdl-10166440

RESUMO

OBJECTIVE: To implement a cost/benefit analysis of telemedicine subspecialty care provided between the Powhatan Correctional Center (PCC) of the Virginia Department of Corrections (Corrections) and the Medical College of Virginia campus of Virginia Commonwealth University (MCV/VCU). METHODS: We evaluated the costs and benefits of the implementation of telemedicine for HIV-positive inmates. Benefits included dollar savings in transportation and medical reimbursement. Costs included those of operating the telemedicine system and of medical care. Non-dollar benefits included implementing more consistent and timely treatment of inmates and reducing security risk. RESULTS: Over the 7-month study period, the total number of HIV consults by telemedicine was 165. The Department of Corrections was able to achieve transportation and medical savings of $35,640 and $21,123, respectively. The operating costs for the telemedicine services totaled $42,277. The net benefit, which is the difference between cost savings and total operating costs, was $14,486. CONCLUSION: Telemedicine increased access to care for HIV-positive inmates and generated cost savings in transportation and care delivery.


Assuntos
Prisões , Faculdades de Medicina , Telemedicina/economia , Redução de Custos , Análise Custo-Benefício , Infecções por HIV/economia , Infecções por HIV/terapia , Humanos , Virginia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...