Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 97
Filtrar
1.
IEEE Robot Autom Lett ; 9(7): 6178-6185, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38948904

RESUMO

The evolution of magnetically actuated millirobots gives rise to unique teleoperation challenges due to their non-traditional kinematic and dynamic architectures, as well as their frequent use of suboptimal imaging modalities. Recent investigations into haptic interfaces for millirobots have shown promise but lack the clinically motivated task scenarios necessary to justify future development. In this work, we investigate the utility of haptic feedback on bilateral teleoperation of a magnetically actuated millirobot in visually deficient conditions. We conducted an N=23 user study in an aneurysm coiling inspired procedure, which required participants to navigate the robot through a maze in near total darkness to manipulate beads to a target under simulated fluoroscopy. We hypothesized that users will be better able to complete the telemanipulation task with haptic feedback while reducing excess forces on their surroundings compared to the no feedback conditions. Our results showed an over 40% improvement in participants' bead scoring, a nearly 10% reduction in mean force, and 13% reduction in maximum force with haptic feedback, as well as significant improvements in other metrics. Results highlight that benefits of haptic feedback are retained when haptic feedback is removed. These findings suggest that haptic feedback has the potential to significantly improve millirobot telemanipulation and control in traditionally vision deficient tasks.

2.
Micromachines (Basel) ; 15(6)2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38930758

RESUMO

Partial-thickness corneal transplants using a deep anterior lamellar keratoplasty (DALK) approach has demonstrated better patient outcomes than a full-thickness cornea transplant. However, despite better clinical outcomes from the DALK procedure, adoption of the technique has been limited because the accurate insertion of the needle into the deep stroma remains technically challenging. In this work, we present a novel hands-free eye mountable robot for automatic needle placement in the cornea, AutoDALK, that has the potential to simplify this critical step in the DALK procedure. The system integrates dual light-weight linear piezo motors, an OCT A-scan distance sensor, and a vacuum trephine-inspired design to enable the safe, consistent, and controllable insertion of a needle into the cornea for the pneumodissection of the anterior cornea from the deep posterior cornea and Descemet's membrane. AutoDALK was designed with feedback from expert corneal surgeons and performance was evaluated by finite element analysis simulation, benchtop testing, and ex vivo experiments to demonstrate the feasibility of the system for clinical applications. The mean open-loop positional deviation was 9.39 µm, while the system repeatability and accuracy were 39.48 µm and 43.18 µm, respectively. The maximum combined thrust of the system was found to be 1.72 N, which exceeds the clinical penetration force of the cornea. In a head-to-head ex vivo comparison against an expert surgeon using a freehand approach, AutoDALK achieved more consistent needle depth, which resulted in fewer perforations of Descemet's membrane and significantly deeper pneumodissection of the stromal tissue. The results of this study indicate that robotic needle insertion has the potential to simplify the most challenging task of the DALK procedure, enable more consistent surgical outcomes for patients, and standardize partial-thickness corneal transplants as the gold standard of care if demonstrated to be more safe and more effective than penetrating keratoplasty.

3.
JTCVS Open ; 18: 209-220, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38690440

RESUMO

Objectives: The complexity of aortic arch reconstruction due to diverse 3-dimensional geometrical abnormalities is a major challenge. This study introduces 3-dimensional printed tissue-engineered vascular grafts, which can fit patient-specific dimensions, optimize hemodynamics, exhibit antithrombotic and anti-infective properties, and accommodate growth. Methods: We procured cardiac magnetic resonance imaging with 4-dimensional flow for native porcine anatomy (n = 10), from which we designed tissue-engineered vascular grafts for the distal aortic arch, 4 weeks before surgery. An optimal shape of the curved vascular graft was designed using computer-aided design informed by computational fluid dynamics analysis. Grafts were manufactured and implanted into the distal aortic arch of porcine models, and postoperative cardiac magnetic resonance imaging data were collected. Pre- and postimplant hemodynamic data and histology were analyzed. Results: Postoperative magnetic resonance imaging of all pigs with 1:1 ratio of polycaprolactone and poly-L-lactide-co-ε-caprolactone demonstrated no specific dilatation or stenosis of the graft, revealing a positive growth trend in the graft area from the day after surgery to 3 months later, with maintaining a similar shape. The peak wall shear stress of the polycaprolactone/poly-L-lactide-co-ε-caprolactone graft portion did not change significantly between the day after surgery and 3 months later. Immunohistochemistry showed endothelization and smooth muscle layer formation without calcification of the polycaprolactone/poly-L-lactide-co-ε-caprolactone graft. Conclusions: Our patient-specific polycaprolactone/poly-L-lactide-co-ε-caprolactone tissue-engineered vascular grafts demonstrated optimal anatomical fit maintaining ideal hemodynamics and neotissue formation in a porcine model. This study provides a proof of concept of patient-specific tissue-engineered vascular grafts for aortic arch reconstruction.

4.
Biomed Opt Express ; 15(4): 2543-2560, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38633079

RESUMO

Anastomosis is a common and critical part of reconstructive procedures within gastrointestinal, urologic, and gynecologic surgery. The use of autonomous surgical robots such as the smart tissue autonomous robot (STAR) system demonstrates an improved efficiency and consistency of the laparoscopic small bowel anastomosis over the current da Vinci surgical system. However, the STAR workflow requires auxiliary manual monitoring during the suturing procedure to avoid missed or wrong stitches. To eliminate this monitoring task from the operators, we integrated an optical coherence tomography (OCT) fiber sensor with the suture tool and developed an automatic tissue classification algorithm for detecting missed or wrong stitches in real time. The classification results were updated and sent to the control loop of STAR robot in real time. The suture tool was guided to approach the object by a dual-camera system. If the tissue inside the tool jaw was inconsistent with the desired suture pattern, a warning message would be generated. The proposed hybrid multilayer perceptron dual-channel convolutional neural network (MLP-DC-CNN) classification platform can automatically classify eight different abdominal tissue types that require different suture strategies for anastomosis. In MLP, numerous handcrafted features (∼1955) were utilized including optical properties and morphological features of one-dimensional (1D) OCT A-line signals. In DC-CNN, intensity-based features and depth-resolved tissues' attenuation coefficients were fully exploited. A decision fusion technique was applied to leverage the information collected from both classifiers to further increase the accuracy. The algorithm was evaluated on 69,773 testing A-line data. The results showed that our model can classify the 1D OCT signals of small bowels in real time with an accuracy of 90.06%, a precision of 88.34%, and a sensitivity of 87.29%, respectively. The refresh rate of the displayed A-line signals was set as 300 Hz, the maximum sensing depth of the fiber was 3.6 mm, and the running time of the image processing algorithm was ∼1.56 s for 1,024 A-lines. The proposed fully automated tissue sensing model outperformed the single classifier of CNN, MLP, or SVM with optimized architectures, showing the complementarity of different feature sets and network architectures in classifying intestinal OCT A-line signals. It can potentially reduce the manual involvement of robotic laparoscopic surgery, which is a crucial step towards a fully autonomous STAR system.

5.
Artigo em Inglês | MEDLINE | ID: mdl-38516341

RESUMO

Among the numerous additive manufacturing or "three-dimensional (3D) printing" techniques, two-photon Direct Laser Writing (DLW) is distinctively suited for applications that demand high geometric versatility with micron-to-submicron-scale feature resolutions. Recently, "ex situ DLW (esDLW)" has emerged as a powerful approach for printing 3D microfluidic structures directly atop meso/macroscale fluidic tubing that can be manipulated by hand; however, difficulties in creating custom esDLW-compatible multilumen tubing at such scales has hindered progress. To address this impediment, here we introduce a novel methodology for fabricating submillimeter multilumen tubing for esDLW 3D printing. Preliminary fabrication results demonstrate the utility of the presented strategy for resolving 743 µm-in-diameter tubing with three lumens-each with an inner diameter (ID) of 80 µm. Experimental results not only revealed independent flow of discrete fluorescently labelled fluids through each of the three lumens, but also effective esDLW-printing of a demonstrative 3D "MEMS" microstructure atop the tubing. These results suggest that the presented approach could offer a promising pathway to enable geometrically sophisticated microfluidic systems to be 3D printed with input and/or output ports fully sealed to multiple, distinct lumens of fluidic tubing for emerging applications in fields ranging from drug delivery and medical diagnostics to soft surgical robotics.

7.
Artigo em Inglês | MEDLINE | ID: mdl-38482160

RESUMO

A variety of emerging applications, particularly those in medical and soft robotics fields, are predicated on the ability to fabricate long, flexible meso/microfluidic tubing with high customization. To address this need, here we present a hybrid additive manufacturing (or "three-dimensional (3D) printing") strategy that involves three key steps: (i) using the "Vat Photopolymerization (VPP) technique, "Liquid-Crystal Display (LCD)" 3D printing to print a bulk microfluidic device with three inlets and three concentric outlets; (ii) using "Two-Photon Direct Laser Writing (DLW)" to 3D microprint a coaxial nozzle directly atop the concentric outlets of the bulk microdevice, and then (iii) extruding paraffin oil and a liquid-phase photocurable resin through the coaxial nozzle and into a polydimethylsiloxane (PDMS) channel for UV exposure, ultimately producing the desired tubing. In addition to fabricating the resulting tubing-composed of polymerized photomaterial-at arbitrary lengths (e.g., > 10 cm), the distinct input pressures can be adjusted to tune the inner diameter (ID) and outer diameter (OD) of the fabricated tubing. For example, experimental results revealed that increasing the driving pressure of the liquid-phase photomaterial from 50 kPa to 100 kPa led to fluidic tubing with IDs and ODs of 291±99 µm and 546±76 µm up to 741±31 µm and 888±39 µm, respectively. Furthermore, preliminary results for DLW-printing a microfluidic "M" structure directly atop the tubing suggest that the tubing could be used for "ex situ DLW (esDLW)" fabrication, which would further enhance the utility of the tubing.

8.
IEEE Robot Autom Lett ; 9(2): 1166-1173, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38292408

RESUMO

Head and neck cancers are the seventh most common cancers worldwide, with squamous cell carcinoma being the most prevalent histologic subtype. Surgical resection is a primary treatment modality for many patients with head and neck squamous cell carcinoma, and accurately identifying tumor boundaries and ensuring sufficient resection margins are critical for optimizing oncologic outcomes. This study presents an innovative autonomous system for tumor resection (ASTR) and conducts a feasibility study by performing supervised autonomous midline partial glossectomy for pseudotumor with millimeter accuracy. The proposed ASTR system consists of a dual-camera vision system, an electrosurgical instrument, a newly developed vacuum grasping instrument, two 6-DOF manipulators, and a novel autonomous control system. The letter introduces an ontology-based research framework for creating and implementing a complex autonomous surgical workflow, using the glossectomy as a case study. Porcine tongue tissues are used in this study, and marked using color inks and near-infrared fluorescent (NIRF) markers to indicate the pseudotumor. ASTR actively monitors the NIRF markers and gathers spatial and color data from the samples, enabling planning and execution of robot trajectories in accordance with the proposed glossectomy workflow. The system successfully performs six consecutive supervised autonomous pseudotumor resections on porcine specimens. The average surface and depth resection errors measure 0.73±0.60 mm and 1.89±0.54 mm, respectively, with no positive tumor margins detected in any of the six resections. The resection accuracy is demonstrated to be on par with manual pseudotumor glossectomy performed by an experienced otolaryngologist.

9.
Eur J Cardiothorac Surg ; 65(1)2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38180888

RESUMO

OBJECTIVES: The 2 opposing inflows and 2 outflows in a total cavopulmonary connection make mechanical circulatory support (MCS) extremely challenging. We have previously reported a novel convergent cavopulmonary connection (CCPC) Fontan design that improves baseline characteristics and provides a single inflow and outflow, thus simplifying MCS. This study aims to assess the feasibility of MCS of this novel configuration using axial flow pumps in an in vitro benchtop model. METHODS: Three-dimensional segmentations of 12 single-ventricle patients (body surface area 0.5-1.75 m2) were generated from cardiovascular magnetic resonance images. The CCPC models were designed by connecting the inferior vena cava and superior vena cava to a shared conduit ascending to the pulmonary arteries, optimized in silico. The 12 total cavopulmonary connection and their corresponding CCPC models underwent in vitro benchtop characterization. Two MCS devices were used, the Impella RP® and the PediPump. RESULTS: MCS successfully and symmetrically reduced the pressure in both vena cavae by >20 mmHg. The devices improved the hepatic flow distribution balance of all CCPC models (Impella RP®P = 0.045, PediPump P = 0.055). CONCLUSIONS: The CCPC Fontan design provides a feasible MCS solution for a failing Fontan by balancing hepatic flow distribution and symmetrically decompressing the central venous pressure. Cardiac index may also improve with MCS. Additional studies are needed to evaluate this concept for managing Fontan failure.


Assuntos
Técnica de Fontan , Cardiopatias Congênitas , Humanos , Técnica de Fontan/métodos , Veia Cava Superior/cirurgia , Artéria Pulmonar/cirurgia , Veia Cava Inferior/cirurgia , Pulmão/cirurgia , Modelos Cardiovasculares , Hemodinâmica , Cardiopatias Congênitas/cirurgia
10.
Artigo em Inglês | MEDLINE | ID: mdl-38090625

RESUMO

We reported a design and evaluation of an optical coherence tomography (OCT) sensor-integrated 27 gauge vertically inserted razor edge cannula (VIREC) for pneumatic dissection of Descemet's membrane (DM) from the stromal layer. The VIREC was inserted vertically at the apex of the cornea to the desired depth near DM. The study was performed using ex vivo bovine corneas (N = 5) and rabbit corneas (N = 5). A clean penumodissection of a stromal layer was successfully performed using VIREC without any stomal blanching on bovine eyes. The "big bubble" was generated in all five tests without perforation. Only micro bubbles were observed on rabbit eyes. The results proved that VIREC can be an effective surgical option for "big bubble" DALK.

11.
Artigo em Inglês | MEDLINE | ID: mdl-37985613

RESUMO

PURPOSE: Patients presenting with coarctation of the aorta (CoA) may also suffer from co-existing transverse arch hypoplasia (TAH). Depending on the risks associated with the surgery and the severity of TAH, clinicians may decide to repair only CoA, and monitor the TAH to see if it improves as the patient grows. While acutely successful, eventually hemodynamics may become suboptimal if TAH is left untreated. The objective of this work aims to develop a patient-specific surgical planning framework for predicting and assessing postoperative outcomes of simple CoA repair and comprehensive repair of CoA and TAH. METHODS: The surgical planning framework consisted of virtual clamp placement, stenosis resection, and design and optimization of patient-specific aortic grafts that involved geometrical modeling of the graft and computational fluid dynamics (CFD) simulation for evaluating various surgical plans. Time-dependent CFD simulations were performed using Windkessel boundary conditions at the outlets that were obtained from patient-specific non-invasive pressure and flow data to predict hemodynamics before and after the virtual repairs. We applied the proposed framework to investigate optimal repairs for six patients (n = 6) diagnosed with both CoA and TAH. Design optimization was performed by creating a combination of a tubular graft and a waterslide patch to reconstruct the aortic arch. The surfaces of the designed graft were parameterized to optimize the shape. RESULTS: Peak systolic pressure drop (PSPD) and time-averaged wall shear stress (TAWSS) were used as performance metrics to evaluate surgical outcomes of various graft designs and implantation. The average PSPD improvements were 28% and 44% after the isolated CoA repair and comprehensive repair, respectively. Maximum values of TAWSS were decreased by 60% after CoA repair and further improved by 22% after the comprehensive repair. The oscillatory shear index was calculated and the values were confirmed to be in the normal range after the repairs. CONCLUSION: The results showed that the comprehensive repair outperforms the simple CoA repair and may be more advantageous in the long term in some patients. We demonstrated that the surgical planning and patient-specific flow simulations could potentially affect the selection and outcomes of aorta repairs.

12.
Int J Comput Assist Radiol Surg ; 18(9): 1547-1557, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37486544

RESUMO

PURPOSE: During minimally invasive surgery, surgeons maneuver tools through complex anatomies, which is difficult without the ability to control the position of the tools inside the body. A potential solution for a substantial portion of these procedures is the efficient design and control of a pneumatically actuated soft robot system. METHODS: We designed and evaluated a system to control a steerable catheter tip. A macroscale 3D printed catheter tip was designed to have two separately pressurized channels to induce bending in two directions. A motorized hand controller was developed to allow users to control the bending angle while manually inserting the steerable tip. Preliminary characterization of two catheter tip prototypes was performed and used to map desired angle inputs into pressure commands. RESULTS: The integrated robotic system allowed both a novice and a skilled surgeon to position the steerable catheter tip at the location of cylindrical targets with sub-millimeter accuracy. The novice was able to reach each target within ten seconds and the skilled surgeon within five seconds on average. CONCLUSION: This soft robotic system enables its user to simultaneously insert and bend the pneumatically actuated catheter tip with high accuracy and in a short amount of time. These results show promise concerning the development of a soft robotic system that can improve outcomes in minimally invasive interventions.


Assuntos
Procedimentos Cirúrgicos Robóticos , Robótica , Humanos , Desenho de Equipamento , Procedimentos Cirúrgicos Minimamente Invasivos/métodos , Catéteres , Procedimentos Cirúrgicos Robóticos/métodos
13.
Science ; 381(6654): 141-146, 2023 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-37440630

RESUMO

Artificial intelligence (AI) applications in medical robots are bringing a new era to medicine. Advanced medical robots can perform diagnostic and surgical procedures, aid rehabilitation, and provide symbiotic prosthetics to replace limbs. The technology used in these devices, including computer vision, medical image analysis, haptics, navigation, precise manipulation, and machine learning (ML) , could allow autonomous robots to carry out diagnostic imaging, remote surgery, surgical subtasks, or even entire surgical procedures. Moreover, AI in rehabilitation devices and advanced prosthetics can provide individualized support, as well as improved functionality and mobility (see the figure). The combination of extraordinary advances in robotics, medicine, materials science, and computing could bring safer, more efficient, and more widely available patient care in the future. -Gemma K. Alderton.

14.
JTCVS Open ; 13: 320-329, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37063134

RESUMO

Objective: The current total cavopulmonary connection Fontan has competing inflows and outflows, creating hemodynamic inefficiencies that contribute to Fontan failure and complicate placement and efficiency of mechanical circulatory support. We propose a novel convergent cavopulmonary connection (CCPC) Fontan design to create a single, converged venous outflow to the pulmonary arteries, thus increasing efficiency and mechanical circulatory support access. We then evaluate the feasibility and hemodynamic performance of the CCPC in various patient sizes using computational fluid dynamic assessments of computer-aided designs. Methods: Cardiac magnetic resonance imaging data from 12 patients with single ventricle (10 total cavopulmonary connection, 2 Glenn) physiology (body surface area, 0.5-2.0 m2) were segmented to create 3-dimensional replicas of all thoracic structures. Surgically feasible CCPC shapes within constraints of anatomy were created using iterative computational fluid dynamic and clinician input. Designs varied based on superior and inferior vena cava conduit sizes, coronal attachment height, coronal entry angle, and axial entry angle of the superior vena cava to the inferior vena cava. CCPC designs were optimized based on efficiency (indexed power loss), risk of arteriovenous malformations (hepatic flow distribution), and risk of flow stasis (% nonphysiologic wall shear stress). Results: All CCPC designs met hemodynamic performance thresholds for indexed power loss and hepatic flow distribution. CCPC designs showed improvements in reducing % nonphysiologic wall shear stress and balancing HFD. Conclusions: CCPC is physiologically and surgically feasible in various patient sizes using validated computational fluid dynamic models. CCPC configuration has analogous indexed power loss, hepatic flow distribution, and % nonphysiologic wall shear stress compared with total cavopulmonary connection, and the single inflow and outflow may ease mechanical circulatory support therapies. Further studies are required for design optimization and mechanical circulatory support institution.

15.
Biomed Eng Online ; 22(1): 19, 2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36855095

RESUMO

BACKGROUND: Pericardial access is necessary for the application of epicardial cardiac therapies including ablation catheters, pacing and defibrillation leads, and left atrial appendage closure systems. Pericardial access under fluoroscopic guidance is difficult in patients without pericardial effusions and may result in coronary artery damage, ventricular injury, or perforation with potentially life-threatening pericardial bleeding in up to 10% of cases. There is a clinical need for a pericardial access technique to safely deliver epicardial cardiac therapies. METHODS: In this paper, we describe the design and evaluation of a novel videoscope and tool kit to percutaneously access the pericardial space under direct visualization. Imaging is performed by a micro-CMOS camera with an automatic gain adjustment software to prevent image saturation. Imaging quality is quantified using known optical targets, while tool performance is evaluated in pediatric insufflation and pericardial access simulators. Device safety and efficacy is demonstrated by infant porcine preclinical studies (N = 6). RESULTS: The videoscope has a resolution of 400 × 400 pixels, imaging rate of 30 frames per second, and fits within the lumen of a 14G needle. The tool can resolve features smaller than 39.4 µm, achieves a magnification of 24x, and has a maximum of 3.5% distortion within the field of view. Successful pericardial access was achieved in pediatric simulators and acute in vivo animal studies. During in vivo testing, it took the electrophysiologist an average of 66.83 ± 32.86 s to insert the pericardial access tool into the thoracic space and visualize the heart. After visualizing the heart, it took an average of 136.67 ± 80.63 s to access the pericardial space under direct visualization. The total time to pericardial access measured from needle insertion was 6.7 × quicker than pericardial access using alternative direct visualization techniques. There was no incidence of ventricular perforation. CONCLUSIONS: Percutaneous pericardial access under direct visualization is a promising technique to access the pericardial space without complications in simulated and in vivo animal models.


Assuntos
Ablação por Cateter , Pericárdio , Animais , Suínos , Vasos Coronários , Imagem de Difusão por Ressonância Magnética , Fluoroscopia
16.
IEEE Robot Autom Lett ; 7(4): 9429-9436, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36544557

RESUMO

Magnetic actuation holds promise for wirelessly controlling small, magnetic surgical tools and may enable the next generation of ultra minimally invasive surgical robotic systems. Precise torque and force exertion are required for safe surgical operations and accurate state control. Dipole field estimation models perform well far from electromagnets but yield large errors near coils. Thus, manipulations near coils suffer from severe (10×) field modeling errors. We experimentally quantify closed-loop magnetic agent control performance by using both a highly erroneous dipole model and a more accurate numerical magnetic model to estimate magnetic forces and torques for any given robot pose in 2D. We compare experimental measurements with estimation errors for the dipole model and our finite element analysis (FEA) based model of fields near coils. With five different paths designed for this study, we demonstrate that FEA-based magnetic field modeling reduces positioning root-mean-square (RMS) errors by 48% to 79% as compared with dipole models. Models demonstrate close agreement for magnetic field direction estimation, showing similar accuracy for orientation control. Such improved magnetic modelling is crucial for systems requiring robust estimates of magnetic forces for positioning agents, particularly in force-sensitive environments like surgical manipulation.

17.
Artigo em Inglês | MEDLINE | ID: mdl-36277992

RESUMO

Deep anterior lamellar keratoplasty (DALK) is a partial-thickness cornea transplant procedure in which only the recipient's stroma is replaced, leaving the host's Descemet's membrane (DM) and endothelium intact. This highly challenging "Big Bubble" procedure requires micron accuracy to insert a hydro-dissection needle as close as possible to the DM. Here, we report the design and evaluation of a downward viewing common-path optical coherence tomography (OCT) guided hydro-dissection needle for DALK. This design offers the flexibility of using different insertion angles and needle sizes. With the fiber situated outside the needle and eye, the needle can use its' full lumen for a smoother air/fluid injection and image quality is improved. The common-path OCT probe uses a bare optical fiber with its tip cleaved at the right angle for both reference and sample arm which is encapsulated in a 25-gauge stainless still tube. The fiber was set up vertically with a half-ball epoxy lens at the end to provide an A-scan with an 11-degree downward field of view. The hydro dissection needle was set up at 70 degrees from vertical and the relative position between the fiber end and the needle tip remained constant during the insertion. The fiber and needle were aligned by a customized needle driver to allow the needle tip and tissue underneath to both be imaged within the same A-scan. Fresh porcine eyes (N = 5) were used for the studies. The needle tip position, the stroma, and DM were successfully identified from the A-scan during the whole insertion process. The results showed the downward viewing OCT distal sensor can accurately guide the needle insertion for DALK and improved the average insertion depth compared to freehand insertion.

18.
Adv Intell Syst ; 4(6)2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35967598

RESUMO

The field of magnetic robotics aims to obviate physical connections between the actuators and end-effectors. Such tetherless control may enable new ultra-minimally invasive surgical manipulations in clinical settings. While wireless actuation offers advantages in medical applications, the challenge of providing sufficient force to magnetic needles for tissue penetration remains a barrier to practical application. Applying sufficient force for tissue penetration is required for tasks such as biopsy, suturing, cutting, drug delivery, and accessing deep seated regions of complex structures in organs such as the eye. To expand the force landscape for such magnetic surgical tools, an impact-force based suture needle capable of penetrating in vitro and ex vivo samples with 3-DOF planar motion is proposed. Using custom-built 14G and 25G needles, we demonstrate generation of 410 mN penetration force, a 22.7-fold force increase with more than 20 times smaller volume compared to similar magnetically guided needles. With the MPACT-Needle, in vitro suturing of a gauze mesh onto an agar gel is demonstrated. In addition, we have reduced the tip size to 25G, which is a typical needle size for interventions in the eye, to demonstrate ex vivo penetration in a rabbit eye, mimicking procedures such as corneal injections and transscleral drug delivery.

19.
Sensors (Basel) ; 22(14)2022 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-35891016

RESUMO

Developing image-guided robotic systems requires access to flexible, open-source software. For image guidance, the open-source medical imaging platform 3D Slicer is one of the most adopted tools that can be used for research and prototyping. Similarly, for robotics, the open-source middleware suite robot operating system (ROS) is the standard development framework. In the past, there have been several "ad hoc" attempts made to bridge both tools; however, they are all reliant on middleware and custom interfaces. Additionally, none of these attempts have been successful in bridging access to the full suite of tools provided by ROS or 3D Slicer. Therefore, in this paper, we present the SlicerROS2 module, which was designed for the direct use of ROS2 packages and libraries within 3D Slicer. The module was developed to enable real-time visualization of robots, accommodate different robot configurations, and facilitate data transfer in both directions (between ROS and Slicer). We demonstrate the system on multiple robots with different configurations, evaluate the system performance and discuss an image-guided robotic intervention that can be prototyped with this module. This module can serve as a starting point for clinical system development that reduces the need for custom interfaces and time-intensive platform setup.


Assuntos
Robótica , Diagnóstico por Imagem , Espécies Reativas de Oxigênio , Software
20.
JMIR Cardio ; 6(1): e35488, 2022 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-35713940

RESUMO

BACKGROUND: Patients with single ventricle heart defects receive 3 stages of operations culminating in the Fontan procedure. During the Fontan procedure, a vascular graft is sutured between the inferior vena cava and pulmonary artery to divert deoxygenated blood flow to the lungs via passive flow. Customizing the graft configuration can maximize the long-term benefits. However, planning patient-specific procedures has several challenges, including the ability for physicians to customize grafts and evaluate their hemodynamic performance. OBJECTIVE: The aim of this study was to develop a virtual reality (VR) Fontan graft modeling and evaluation software for physicians. A user study was performed to achieve 2 additional goals: (1) to evaluate the software when used by medical doctors and engineers, and (2) to explore the impact of viewing hemodynamic simulation results in numerical and graphical formats. METHODS: A total of 5 medical professionals including 4 physicians (1 fourth-year resident, 1 third-year cardiac fellow, 1 pediatric intensivist, and 1 pediatric cardiac surgeon) and 1 biomedical engineer voluntarily participated in the study. The study was pre-scripted to minimize the variability of the interactions between the experimenter and the participants. All participants were trained to use the VR gear and our software, CorFix. Each participant designed 1 bifurcated and 1 tube-shaped Fontan graft for a single patient. A hemodynamic performance evaluation was then completed, allowing the participants to further modify their tube-shaped design. The design time and hemodynamic performance for each graft design were recorded. At the end of the study, all participants were provided surveys to evaluate the usability and learnability of the software and rate the intensity of VR sickness. RESULTS: The average times for creating 1 bifurcated and 1 tube-shaped graft after a single 10-minute training session were 13.40 and 5.49 minutes, respectively, with 3 out 5 bifurcated and 1 out of 5 tube-shaped graft designs being in the benchmark range of hepatic flow distribution. Reviewing hemodynamic performance results and modifying the tube-shaped design took an average time of 2.92 minutes. Participants who modified their tube-shaped graft designs were able to improve the nonphysiologic wall shear stress (WSS) percentage by 7.02%. All tube-shaped graft designs improved the WSS percentage compared to the native surgical case of the patient. None of the designs met the benchmark indexed power loss. CONCLUSIONS: VR graft design software can quickly be taught to physicians with no engineering background or VR experience. Improving the CorFix system could improve performance of the users in customizing and optimizing grafts for patients. With graphical visualization, physicians were able to improve WSS percentage of a tube-shaped graft, lowering the chance of thrombosis. Bifurcated graft designs showed potential strength in better flow split to the lungs, reducing the risk for pulmonary arteriovenous malformations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...