Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Int J Radiat Oncol Biol Phys ; 113(1): 214-227, 2022 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-35074434

RESUMO

PURPOSE: Our purpose was to investigate whether liver stereotactic body radiation therapy treatment planning can be harmonized across different treatment planning systems, delivery techniques, and institutions by using a specific prescription method and to minimize the knowledge gap concerning intersystem and interuser differences. We provide best practice guidelines for all used techniques. METHODS AND MATERIALS: A multiparametric specification of target dose (gross target volume [GTV]D50%, GTVD0.1cc, GTVV90%, planning target volume [PTV]V70%) with a prescription dose of GTVD50% = 3 × 20 Gy and organ-at-risk (OAR) limits were distributed with computed tomography and structure sets from 3 patients with liver metastases. Thirty-five institutions provided 132 treatment plans using different irradiation techniques. These plans were first analyzed for target and OAR doses. Four different renormalization methods were performed (PTVDmin, PTVD98%, PTVD2%, PTVDmax). The resulting 660 treatments plans were evaluated regarding target doses to study the effect of dose renormalization to different prescription methods. A relative scoring system was used for comparisons. RESULTS: GTVD50% prescription can be performed in all systems. Treatment plan harmonization was overall successful, with standard deviations for Dmax, PTVD98%, GTVD98%, and PTVDmean of 1.6, 3.3, 1.9, and 1.5 Gy, respectively. Primary analysis showed 55 major deviations from clinical goals in 132 plans, whereas in only <20% of deviations GTV/PTV dose was traded for meeting OAR limits. GTVD50% prescription produced the smallest deviation from target planning objectives and between techniques, followed by the PTVDmax, PTVD98%, PTVD2%, and PTVDmin prescription. Deviations were significant for all combinations but for the PTVDmax prescription compared with GTVD50% and PTVD98%. Based on the various dose prescription methods, all systems significantly differed from each other, whereas GTVD50% and PTVD98% prescription showed the least difference between the systems. CONCLUSIONS: This study showed the feasibility of harmonizing liver stereotactic body radiation therapy treatment plans across different treatment planning systems and delivery techniques when a sufficient set of clinical goals is given.


Assuntos
Neoplasias Hepáticas , Radiocirurgia , Radioterapia de Intensidade Modulada , Benchmarking , Humanos , Neoplasias Hepáticas/diagnóstico por imagem , Neoplasias Hepáticas/radioterapia , Radiocirurgia/métodos , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia de Intensidade Modulada/métodos
2.
Radiat Oncol ; 12(1): 205, 2017 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-29282089

RESUMO

BACKGROUND: The aim of this work is to validate the Dynamic Planning Module in terms of usability and acceptance in the treatment planning workflow. METHODS: The Dynamic Planning Module was used for decision making whether a plan adaptation was necessary within one course of radiation therapy. The Module was also used for patients scheduled for re-irradiation to estimate the dose in the pretreated region and calculate the accumulated dose to critical organs at risk. During one year, 370 patients were scheduled for plan adaptation or re-irradiation. All patient cases were classified according to their treated body region. For a sub-group of 20 patients treated with RT for lung cancer, the dosimetric effect of plan adaptation during the main treatment course was evaluated in detail. Changes in tumor volume, frequency of re-planning and the time interval between treatment start and plan adaptation were assessed. RESULTS: The Dynamic Planning Tool was used in 20% of treated patients per year for both approaches nearly equally (42% plan adaptation and 58% re-irradiation). Most cases were assessed for the thoracic body region (51%) followed by pelvis (21%) and head and neck cases (10%). The sub-group evaluation showed that unintended plan adaptation was performed in 38% of the scheduled cases. A median time span between first day of treatment and necessity of adaptation of 17 days (range 4-35 days) was observed. PTV changed by 12 ± 12% on average (maximum change 42%). PTV decreased in 18 of 20 cases due to tumor shrinkage and increased in 2 of 20 cases. Re-planning resulted in a reduction of the mean lung dose of the ipsilateral side in 15 of 20 cases. CONCLUSION: The experience of one year showed high acceptance of the Dynamic Planning Module in our department for both physicians and medical physicists. The re-planning can potentially reduce the accumulated dose to the organs at risk and ensure a better target volume coverage. In the re-irradiation situation, the Dynamic Planning Tool was used to consider the pretreatment dose, to adapt the actual treatment schema more specifically and to review the accumulated dose.


Assuntos
Neoplasias Pulmonares/radioterapia , Planejamento da Radioterapia Assistida por Computador/métodos , Reirradiação , Software , Humanos , Neoplasias Pulmonares/classificação , Neoplasias Pulmonares/patologia , Prognóstico , Radiometria/métodos , Dosagem Radioterapêutica , Radioterapia de Intensidade Modulada/métodos , Carga Tumoral
4.
Strahlenther Onkol ; 193(10): 780-790, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28567503

RESUMO

PURPOSE: The aim was to evaluate stereotactic body radiation therapy (SBRT) treatment planning variability for early stage nonsmall cell lung cancer (NSCLC) with respect to the published guidelines of the Stereotactic Radiotherapy Working Group of the German Society for Radiation Oncology (DEGRO). MATERIALS AND METHODS: Planning computed tomography (CT) scan and the structure sets (planning target volume, PTV; organs at risk, OARs) of 3 patients with early stage NSCLC were sent to 22 radiotherapy departments with SBRT experience: each department was asked to prepare a treatment plan according to the DEGRO guidelines. The prescription dose was 3 fractions of 15 Gy to the 65% isodose. RESULTS: In all, 87 plans were generated: 36 used intensity-modulated arc therapy (IMAT), 21 used three-dimensional conformal radiation therapy (3DCRT), 6 used static field intensity-modulated radiation therapy (SF-IMRT), 9 used helical radiotherapy and 15 used robotic radiosurgery. PTV dose coverage and simultaneously kept OARs doses were within the clinical limits published in the DEGRO guidelines. However, mean PTV dose (mean 58.0 Gy, range 52.8-66.4 Gy) and dose conformity indices (mean 0.75, range 0.60-1.00) varied between institutions and techniques (p ≤ 0.02). OARs doses varied substantially between institutions, but appeared to be technique independent (p = 0.21). CONCLUSION: All studied treatment techniques are well suited for SBRT of early stage NSCLC according to the DEGRO guidelines. Homogenization of SBRT practice in Germany is possible through the guidelines; however, detailed treatment plan characteristics varied between techniques and institutions and further homogenization is warranted in future studies and recommendations. Optimized treatment planning should always follow the ALARA (as low as reasonably achievable) principle.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/radioterapia , Fidelidade a Diretrizes/estatística & dados numéricos , Neoplasias Pulmonares/radioterapia , Radiocirurgia/estatística & dados numéricos , Radiocirurgia/normas , Planejamento da Radioterapia Assistida por Computador/estatística & dados numéricos , Planejamento da Radioterapia Assistida por Computador/normas , Benchmarking , Carcinoma Pulmonar de Células não Pequenas/epidemiologia , Carcinoma Pulmonar de Células não Pequenas/patologia , Alemanha/epidemiologia , Fidelidade a Diretrizes/normas , Humanos , Neoplasias Pulmonares/epidemiologia , Neoplasias Pulmonares/patologia , Estadiamento de Neoplasias , Prevalência , Dosagem Radioterapêutica , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Resultado do Tratamento
5.
Radiother Oncol ; 97(1): 65-70, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20605245

RESUMO

PURPOSE: To evaluate dosimetric factors predictive for radiation-induced pneumonitis (RP) after pulmonary stereotactic body radiotherapy (SBRT). MATERIALS AND METHODS: A retrospective analysis was performed based on 59 consecutive patients treated with cone-beam CT-based image-guided SBRT for primary NSCLC (n=21) or pulmonary metastases (n=54). The majority of patients were treated with radiosurgery of 26 Gy to 80% (n=29) or three fractions of 12.5 Gy to 65% (n=40). To correct for different single fraction doses, local doses were converted to 2 Gy equivalent normalized total doses (NTDs) using α/ß ratio of 3 Gy for RP. Dose-volume parameters and incidences of RP ≥ grade II SWOG were fitted using NTCP models. RESULTS: Eleven patients developed RP grade II. With an average MLD of 10.3±5.6 Gy to the ipsilateral lung, a significant dose-response relationship was observed: the MLD was 12.5±4.3 Gy and 9.9±5.8 Gy for patients with and without development of RP, respectively. Additionally, volumes of the lung exposed to minimum doses between 2.5 and 50 Gy (V(2.5)-V(50)) were correlated with incidences of RP with a continuous decrease of the goodness of fit for higher doses. CONCLUSIONS: The MLD and V(2.5)-V(50) of the ipsilateral lung were correlated with incidences of RP after pulmonary SBRT.


Assuntos
Adenocarcinoma/radioterapia , Carcinoma de Células Escamosas/radioterapia , Neoplasias Pulmonares/radioterapia , Pneumonite por Radiação/etiologia , Radiocirurgia/efeitos adversos , Adulto , Idoso , Idoso de 80 Anos ou mais , Distribuição de Qui-Quadrado , Tomografia Computadorizada de Feixe Cônico , Fracionamento da Dose de Radiação , Relação Dose-Resposta à Radiação , Feminino , Humanos , Neoplasias Pulmonares/secundário , Masculino , Pessoa de Meia-Idade , Método de Monte Carlo , Radiografia Intervencionista , Dosagem Radioterapêutica , Estudos Retrospectivos , Fatores de Risco , Estatísticas não Paramétricas
6.
Radiother Oncol ; 94(1): 53-9, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20079550

RESUMO

PURPOSE: To evaluate outcome of radiotherapy for locally recurrent cervical and endometrial cancer. MATERIALS AND METHODS: Nineteen patients were treated for a locally recurrent cervical (n=12) or endometrial (n=7) cancer median 26 months after initial surgery (n=18) or radiotherapy (n=1). The whole pelvis was irradiated with 50Gy conventionally fractionated radiotherapy (n=16). Because of large size of the recurrent cancer (median 4.5 cm) and peripheral location (n=12), stereotactic body radiotherapy (SBRT; median 3 fractions of 5Gy to 65%) was used for local dose escalation instead of (n=16) or combined with (n=3) vaginal brachytherapy. RESULTS: After median follow-up of 22 months, 3-year overall survival was 34% with systemic progression the leading cause of death (7/10). Median time to systemic progression was 16 months. Three local recurrences resulted in a local control rate of 81% at 3 years. No correlation between survival, systemic or local control and any patient or treatment characteristic was observed. The rate of late toxicity>grade II was 25% at 3 years: two patients developed a grade IV intestino-vaginal fistula and one patient suffered from a grade IV small bowel ileus. CONCLUSION: Image-guided SBRT for local dose escalation resulted in high rates of local control but was associated with significant late toxicity.


Assuntos
Neoplasias do Endométrio/cirurgia , Recidiva Local de Neoplasia , Radiocirurgia , Neoplasias do Colo do Útero/cirurgia , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Pessoa de Meia-Idade , Resultado do Tratamento
7.
Radiother Oncol ; 93(2): 259-65, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19748146

RESUMO

PURPOSE: To compare step-and-shoot intensity-modulated radiotherapy (ss-IMRT) with volumetric-modulated arc therapy (VMAT) for complex-shaped target volumes with a simultaneous integrated boost (SIB). MATERIALS AND METHODS: This retrospective planning study was based on 20 patients composed of prostate cancer (n=5), postoperative (n=5) or primary (n=5) radiotherapy for pharyngeal cancer and for cancer of the paranasal sinuses (n=5); a SIB with two or three dose levels was planned in all patients. For each patient, one ss-IMRT plan with direct-machine-parameter optimization (DMPO) and VMAT plans with one to three arcs (SmartArc technique) were generated in the Pinnacle planning system. RESULTS: Single arc VMAT improved target coverage and dose homogeneity in radiotherapy for prostate cancer. Two and three VMAT arcs were required to achieve equivalent results compared to ss-IMRT in postoperative and primary radiotherapy for pharyngeal cancer, respectively. In radiotherapy for cancer of the paranasal sinuses, multiarc VMAT resulted in increased spread of low doses to the lenses and decreased target coverage in the region between the orbits. CONCLUSIONS: The complexity of the target volume determined whether single arc VMAT was equivalent to ss-IMRT. Multiple arc VMAT improved results compared to single arc VMAT at cost of increased delivery times, increased monitor unites and increased spread of low doses.


Assuntos
Neoplasias dos Seios Paranasais/radioterapia , Neoplasias Faríngeas/radioterapia , Neoplasias da Próstata/radioterapia , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia de Intensidade Modulada/métodos , Humanos , Masculino , Estudos Retrospectivos
8.
Med Dosim ; 34(2): 170-8, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19410147

RESUMO

Treatment of large target volumes with intensity modulated radiotherapy (IMRT) can be restricted by the maximum field size of the multileaf collimator (MLC). In this work, a straightforward technique for MLC-based IMRT is presented, which is generally applicable and does not depend on the capabilities of the linear accelerator's IMRT delivery system. A dual isocenter technique was developed that maximizes beam overlap. The beams at the first isocenter are arranged such that they interlace with the beams at the second isocenter. All beams contribute to the overlap region, whereas only some contribute to the superior and some to the inferior part of the target. The interlaced technique (9 beams) was compared with an alternative more complex approach (14 beams) for a head-and-neck case with simultaneous integrated boost and 3 different dose levels. The plans were compared in terms of complexity, dosimetry, and the effect of inaccurate translation between the isocenters. The interlaced and the more complex IMRT technique resulted in nearly identical dose distributions without clinically relevant differences. The total number of monitor units (MUs) was comparable with more MUs per segment for the interlaced technique. For the interlaced technique, the number of segments

Assuntos
Neoplasias de Cabeça e Pescoço/radioterapia , Modelos Biológicos , Radiometria/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia Conformacional/métodos , Simulação por Computador , Humanos , Masculino , Pessoa de Meia-Idade , Tamanho do Órgão , Dosagem Radioterapêutica , Resultado do Tratamento
9.
Int J Radiat Oncol Biol Phys ; 74(2): 602-9, 2009 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-19427559

RESUMO

PURPOSE: To evaluate the accuracy of direct reconstruction of mid-ventilation and peak-phase four-dimensional (4D) computed tomography (CT) frames based on the external breathing signal. METHODS AND MATERIALS: For 11 patients with 15 pulmonary targets, a respiration-correlated CT study (4D CT) was acquired for treatment planning. After retrospective time-based sorting of raw projection data and reconstruction of eight CT frames equally distributed over the breathing cycle, mean tumor position (P(mean)), mid-ventilation frame, and breathing motion were evaluated based on the internal tumor trajectory. Analysis of the external breathing signal (pressure sensor around abdomen) with amplitude-based sorting of projections was performed for direct reconstruction of the mid-ventilation frame and frames at peak phases of the breathing cycle. RESULTS: On the basis of the eight 4D CT frames equally spaced in time, tumor motion was largest in the craniocaudal direction, with 12 +/- 7 mm on average. Tumor motion between the two frames reconstructed at peak phases was not different in the craniocaudal and anterior-posterior directions but was systematically smaller in the left-right direction by 1 mm on average. The 3-dimensional distance between P(mean) and the tumor position in the mid-ventilation frame based on the internal tumor trajectory was 1.2 +/- 1 mm. Reconstruction of the mid-ventilation frame at the mean amplitude position of the external breathing signal resulted in tumor positions 2.0 +/- 1.1 mm distant from P(mean). Breathing-induced motion artifacts in mid-ventilation frames caused negligible changes in tumor volume and shape. CONCLUSIONS: Direct reconstruction of the mid-ventilation frame and frames at peak phases based on the external breathing signal was reliable. This makes the reconstruction of only three 4D CT frames sufficient for application of the mid-ventilation technique in clinical practice.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/diagnóstico por imagem , Processamento de Imagem Assistida por Computador , Neoplasias Pulmonares/diagnóstico por imagem , Movimento , Respiração , Tomografia Computadorizada por Raios X/métodos , Idoso , Carcinoma Pulmonar de Células não Pequenas/cirurgia , Feminino , Humanos , Neoplasias Pulmonares/cirurgia , Masculino , Pessoa de Meia-Idade , Radiocirurgia , Estudos Retrospectivos
10.
Radiother Oncol ; 91(3): 288-95, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18835650

RESUMO

PURPOSE: To evaluate the potential of image-guidance, gating and real-time tumor tracking to improve accuracy in pulmonary stereotactic body radiotherapy (SBRT). MATERIALS AND METHODS: Safety margins for compensation of inter- and intra-fractional uncertainties of the target position were calculated based on SBRT treatments of 43 patients with pre- and post-treatment cone-beam CT imaging. Safety margins for compensation of breathing motion were evaluated for 17 pulmonary tumors using respiratory correlated CT, model-based segmentation of 4D-CT images and voxel-based dose accumulation; the target in the mid-ventilation position was the reference. RESULTS: Because of large inter-fractional base-line shifts of the tumor, stereotactic patient positioning and image-guidance based on the bony anatomy required safety margins of 12 mm and 9 mm, respectively. Four-dimensional image-guidance targeting the tumor itself and intra-fractional tumor tracking reduced margins to <5 mm and <3 mm, respectively. Additional safety margins are required to compensate for breathing motion. A quadratic relationship between tumor motion and margins for motion compensation was observed: safety margins of 2.4mm and 6mm were calculated for compensation of 10 mm and 20 mm motion amplitudes in cranio-caudal direction, respectively. CONCLUSION: Four-dimensional image-guidance with pre-treatment verification of the target position and online correction of errors reduced safety margins most effectively in pulmonary SBRT.


Assuntos
Tomografia Computadorizada de Feixe Cônico/métodos , Neoplasias Pulmonares/cirurgia , Radiografia Intervencionista/métodos , Radiocirurgia/métodos , Radioterapia Assistida por Computador/métodos , Técnicas de Imagem de Sincronização Respiratória/métodos , Fracionamento da Dose de Radiação , Humanos , Imageamento Tridimensional , Interpretação de Imagem Radiográfica Assistida por Computador , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA